TABLE OF CONTENT

Item	Page
1-INTRODUCTION	1
2-REVIEW OF LITERATURES	٤
3-MATERIAL AND METHODS	١٨
4-RESULTS	۲۸
5-DISCUSSION	٣٩
6-CONCLUSIONS AND RECOMMENDATIONS	٤٣
7-ENGLISH SUMMARY	٤٦
8-REFERENCES	٤ ٨
9-ARABIC SUMMARY	

4. RESULTS

<u>**Table (4)**</u> Results of the designed experiment showing the detection limit of mixing equine and pork meat with beef and chicken meat.

	Spe	ecies
Percent(%)	Equine	Pork
10%	+ve	+ve
9%	+ve	+ve
8%	+ve	+ve
7%	+ve	+ve
6%	+ve	+ve
5%	+ve	+ve
4%	+ve	+ve
3%	+ve	+ve
2%	+ve	+ve
1%	+ve	+ve
0.5%	+ve	+ve
0.25%	+ve	+ve
0.1%	+ve	+ve
Control positive	+ve	+ve
Control negative	-ve	-ve

<u>**Table (5)**</u> Incidences of adulteration of packaged high brands beef luncheon of three meat processing plants (Group1).

			Species				
Samples	No.		Equine			Pork	
			No. of	+ve	%	No. of +ve %	
			samples			samples	
	Plant A	6	1		16.6%	-ve	
Beef	Plant B	6	1		16.6%	-ve	
Luncheon	Plant C	6	1		16.6%	-ve	
Total	18	•	3		16.6%	-ve	

No= number	+ve =positive	-ve= negative	%=percent
------------	---------------	---------------	-----------

<u>**Table (6)</u>** Incidences of adulteration of packaged high brands beef burger of three meat processing plants (Group1).</u>

			Species			
Samples	No.		Equin	le	Pork	
			No. of +ve	%	No. of +ve	%
			samples		samples	
	Plant A	6	1	16.6%	ve-	I
Beefburge	Plant B	6	-ve	-ve	-ve	
r	Plant C	6	-ve	-ve	-ve	
Total	18	<u> </u>	1	5.5%	-ve	

<u>**Table (7)**</u> Incidences of adulteration of packaged high brands beef kofta of three meat processing plants (Group1).

			Species			
Samples	No.		Equin	e	Pork	
			No. of +ve	%	No. of +ve	%
			samples		samples	
	Plant A	6	-ve	-ve	ve-	
Beef kofta	Plant B	6	-ve	-ve	-ve	
	Plant C	6	-ve	-ve	-ve	
Total	18	1	0	0	-ve	

<u>**Table (8)**</u> Incidences of adulteration of packaged high brands chickenluncheon of three meat processing plants (Group1).

			Species				
Samples	No.		No. Equine			Pork	
			No. of +ve	%	No. of +ve	%	
			samples		samples		
	Plant A	6	1	16.6%	ve-		
Chicken	Plant B	6	-ve	-ve	-ve		
luncheon	Plant C	6	-ve	-ve	-ve		
Total	18	•	1	5.5%	-ve		

<u>**Table (9)</u>** Incidences of adulteration of packaged high brands chickenburger of three meat processing plants (Group1).</u>

	S			Speci	Species			
Samples	No.		nples No.		Equin	e	Pork	
			No. of +ve	%	No. of +ve	%		
			samples		samples			
Chicken	Plant A	6	-ve	-ve	ve-			
burger	Plant B	6	-ve	-ve	-ve			
Total	12		0	0	-ve			

<u>**Table (10)</u>** Incidences of adulteration of packaged high brands chickenkofta of three meat processing plants (Group1).</u>

				Species				
Samples	No.		No.		Equin	e	Pork	
			No. of +ve	%	No. of +ve	%		
			samples		samples			
chicken	Plant A	6	-ve	-ve	ve-	L		
kofta	Plant B	6	-ve	-ve	-ve			
Total	12		0	0	-ve			

<u>**Table (11)</u>** Incidences of adulteration of non packaged low brands beef meat products (luncheon – burger – kofta- minced meatsausage) (n=6) (Group2).</u>

Samples	NO.	Spe	cies
		Equine	Pork
Beef Luncheon	6	-ve	-ve
Beef Burger	6	-ve	-ve
Beef Kofta	6	-ve	-ve
Beef Minced meat	6	-ve	-ve
Beef Sausage	6	-ve	-ve
Total	30	-ve	-ve

Table (12) Incidences of adulteration of non packaged low brands chicken meat products (luncheon – burger – kofta- minced meatsausage) (n=6) (Group2).

Samples	NO.	Spe	cies
		Equine	Pork
Chicken Luncheon	6	-ve	-ve
Chicken Burger	6	-ve	-ve
Chicken Kofta	6	-ve	-ve
Chicken Minced meat	6	-ve	-ve
Chicken Sausage	6	-ve	-ve
Total	30	-ve	-ve

<u>**Table (13)**</u> Adulteration ratesaccording to all examined meat products. (Group1and 2).

Meat product	No. of examined	No. of adulterated	Percent (%) of
	samples	samples	adulteration
Luncheon	48	4	8.3%
Burger	42	1	2.3%
Kofta	42	0	0
Minced meat	12	0	0
Sausage	12	0	0
Total	156	5	3.2%

Figure (1) Electrophoresis analysis with ethidium promide stained agarose gel 1.5% showed PCR product amplified fragment of 221bp (specified for equine species) from extracted DNA of experimental mixtures of beef with equine meat generated by common species oligonucleotide primers. Where lane neg in the rhigt side : negative control for the run(no addition of DNA), lane L:100bp DNA marker (100-200-300-etc), lane pos: control positive equine species DNA, other lane from 1% tell 10% mixture of equine and beef meat.

Figure (2) Electrophoresis analysis with ethidium promide stained agarose gel 1.5% showed PCR product amplified fragment of 221bp (specified for equine species) from extracted DNA of experimental mixtures of beef and chicken meat with equine meat generated by common species oligonucleotide primers. Where lane neg in the rhigt side : negative control for the run(no addition of DNA), lane 1: 0.1% mixture of equine and beef meat, lane 2: 0.25% mixture of equine and beef meat, lane 3:0.5% mixture of equine and beef meat, lane 4: 1% mixture of equine and beef meat, lane 5: 0.1% mixture of equine and chicken meat, lane L:100bp DNA marker (100-200-300-etc), lane pos: control positive equine species DNA, lane 6: 0.25% mixture of equine and chicken meat, lane 7: 0.5% mixture of equine and chicken meat, lane 8: 1% mixture of equine and chicken meat, lane 17: pure chicken meat DNA as a negative control for test mixtures, lane, 19: pure equine meat as a positive control for test mixtures.

Figure (3) Electrophoresis analysis with ethidium promide stained agarose gel 1.5% showed PCR product amplified fragment of 290bp (specified for pork species) from extracted DNA of experimental mixtures of beef and chicken meat with pork meat generated by common species oligonucleotide primers. Where lane neg in the rhigt side : negative controle for the run(no addition of DNA), lane L:100bp DNA marker (100-200-300-etc), lane pos: control positive pork species DNA, lane 9: 0.1% mixture of pork and beef meat, lane 10: 0.25% mixture of pork and beef meat, lane 11:0.5% mixture of pork and beef meat, lane 12: 1% mixture of pork and beef meat, lane 13: 0.1% mixture of pork and chicken meat, lane 14: 0.25% mixture of pork and chicken meat, lane 16: 1% mixture of pork and chicken meat, lane 18: pure chicken meat DNA as a negative control for test mixtures lane, 20: pure pork meat as a positive control for test mixtures.

Figure (4) Electrophoresis analysis with ethidium promide stained agarose gel 1.5% showed PCR product amplified fragment of 221bp (specified for equine species) from extracted DNA of beef and chicken meat products generated by common species oligonucleotide primers. Where lane L:100bp DNA marker (100-200-300-etc), lane pos: control positive equine species DNA, lane neg: negative control for the run(no addition of DNA), lane 1: positive sample (beef luncheon plant B), lane 6: positive sample (chicken luncheon plant A) while other lanes : negative samples.

Figure (5) Electrophoresis analysis with ethidium promide stained agarose gel 1.5% showed PCR product amplified fragment of 221bp (specified for equine species) and 290bp (specified for pork species) and amplified fragment from extracted DNA of beef and chicken meat products generated by common species oligonucleotide primers. Where lane L:100bp DNA marker (100-200-300-etc), lane pos: control positive equine species and pork species DNA, lane neg: negative control for the run(no addition of DNA), lane 2: positive sample (beef luncheon plant A), lane 3: positive sample (beef burger plant A), lane 4: beef luncheon plant C), while other lanes : negative samples.