Abstract

Name: Pierre Ezzat Mehanny Girgis

Title of Thesis: Ameliorating effects of curcumin on hepcidin, some immunological and oxidative stress parameters induced by diazinon in male rats.

Diazinon (DZN) is the most widely used organophosphorus (OP) insecticides, especially in developing countries. It is used to control the pests of agricultural crops in addition to control livestock pests; however it has deleterious effects on health for both humans and animals. Hepcidin is an iron-regulating peptide hormone, reflecting a likely role of hepcidin in innate immunity; hepcidin is also induced by inflammation. Thirty six male albino rats were classified randomly into six equal groups. Group (G1) was kept as control, G2 and G3 were administrated a low and high dose of DZN as 17.5 and 35 mg/kg b.w. $(1/20 \text{ and } 1/10 \text{ LD}_{50})$ respectively, over period of 28 days (5 days/week). G4 received curcumin (CUR) as 200 mg/kg diet. G5 and G6 were administrated high and low dose of DZN, respectively and CUR. The obtained results revealed a significant increase in interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF- α) as the proinflammatory cytokines, hepcidin and ferritin, decrease in erythropoietin (EPO), hemoglobin concentration (Hb), red blood cells (RBCs), serum iron and its related parameters in G2 and G3 were detected in comparison with untreated control (G1). Moreover, CUR treated groups (G5 and G6) revealed improvement of these parameters in comparison with those of corresponding groups. Significant decline in total protein (TP), total albumin (TAlb), total globulin (TGlb) together with albumin/globulin ratio (A/G) of G2 and G3 than control. Significant increase in liver, kidney and spleen malondialdehyde (MDA), catalase (CAT), nitric oxide (NO) with decrease in total antioxidant capacity (TAC) and glutathione (GSH) levels in G2 and G3 than control. Also, the obtained results revealed that there was a significant increase in liver and kideny function parameters in G2 and G3. As CUR is antioxidant and has antiinflammatory effect could rebalance the state of hypoprotenmia associated with hypoalbunemia, and attenuates the oxidative stress. Moreover, upturned in level of liver and kidney function was observed in G5 and G6. The correlation between hepcidin and IL-6, TNF- α , EPO, iron and its related parameters was determined. Histophathological examination revealed degenerative changes in the liver, kidney and spleen tissues in G2 and G3. Meanwhile, CUR alleviates these changes in G5 and G6. In conclusion subacute toxicity of DZN induces alteration in some immunological parameters which in turn cause alteration in hepcidin hormone secretion from hepatic cells leading to anemia and CUR administration had a protective effect against these adverse effects of DZN, also alleviate the deleterious biochemical alterations caused by DZN.

Keywords: Hepcidin, Diazinon, IL-6, TNF- α , Hematological parameters, protein electrophoresis, oxidative stress, Curcumin.

List of Abbreviations

Α	Absorbance
A/G ratio	Albumin/ globulin ratio
AAP	4-aminophenazone
Ach	Acetylcholine
AChE	Acetyl cholinesterase
Alb	Albumin
ALP	Alkaline phosphatase
ALT	Alanin aminotransferase
AP-1	Activator protein 1
AST	Aspartate aminotransferase
В	Blank
b.w	Body weight
BG	Between Groups
CAT	Catalase
CCl ₄	Carbon tetrachloride
CD	Cluster of differentiation
CD4 +	T- helper cell
CD8 +	T-cytotoxic cell
CNS	Central nervous system
COX-2	Cyclooxygenase
CUR	Curcumin
CV	Central vein
DcytB	Duodenal cytochrome B
DF	Degree of freedom
DHBS	3,5-Dichloro-2-hydroxybenzene sulfonic acid
DMT-1	Divalent metal transporter-1

DNA	Deoxyribonucleic acid
DZN	Diazinon
ELISA	Enzyme-linked immunosorbent assay.
EPO	Erythropoietin
Fe	Iron
FPN	Ferroportin
FPN1	Ferroportin 1
GDF I5	Growth differentiation factor 15
GFAP	Glial Fibrillary Acidic Protein
GOT	Glutamic oxaloacetic transaminase.
GPT	Glutamic pyruvic transaminase.
GSH	Glutathione
GSH-Px	GSH peroxidase
GSSG	Glutathione disulfide
H&E	Hematoxylin and eosin
Hb	Hemoglobin
HCP1	Heme carrier protein 1
НСТ	Haematocrit
НЕРН	Ferroxidase hephaestin
HMGB1	High mobility group box-1 protein
НО-1	Heme oxygenase 1
Hrs	Hours
HSCs	Hepatic stellate cells
ICAM-1	Intracellular adhesion molecule-1
IFN- γ	Interferon-gamma
IL	Interleukin
IL-1β	Interleukin-1β
IL-6	Interleukin-6
IMS	Intermediate syndrome

iNOS	Inducible NO synthase
JAK	Janus kinase
LD	Lethal dose
LDH	Lactate dehydrogenase
LPS	Lipopolysaccharide
LYM %	Lymphocyte percent
МАРК	Mitogen-activated protein kinases
МСН	Mean corpuscular Hb
МСНС	Mean corpuscular Hb concentration
MCP-1	Monocyte chemoattractant protein-1
MCV	Mean corpuscular volume
MDA	Malondialdehyde
MDH	Malate dehydrogenase
МНС	Major histocompatibility complex
Min	Minute
mRNA	Messenger ribonucleic acid
NADPH	Nicotinamide adenine dinucleotide phosphate
NF-κβ	Nuclear factor kappa beta
NO	Nitric oxide
NOS	Nitric oxide synthase
NRAMP-1	Natural resistance-associated macrophage protein 1
OD	Optical density
OP	Organophosphorus
OPs	organophosphates
PBS	Phosphate buffer saline
PBS-T	PBS-Tween
PCV	Packed cell volume
PLT	Platelet
PMA	Phorbol 12-myristate 13-acetate

PON1	Paraoxonase/arylesterase1
PR	Precipitating Reagent
PreAlb	Pre Albumin
PV	Portal veins
r	Correlation coefficient
R.T	Room temperature
RBCs	Red blood cells
ROS	Reactive oxygen species
S	Standard
SB	Sample blank
Sec	Seconds
SEM	Standard error of mean
SR	Saturating Reagent
STAT3	Signal transducer and activator of transcription 3
Т	Test
TAC	Total antioxidant capacity
TAlb	Total Albumin
TBA	Thiobarbituric acid
TF	Transferrin
TfR1	Transferrin receptor
TGlb	Total globulin
TIBC	Total iron binding capacity
TLR	Toll-like receptors
TLR2	Toll-like receptor2
TLR4	Toll-like receptor 4
TMB	Tetra methyl benzidine.
TNF- α	Tumor Necrosis Factor-alpha
ТР	Total protein
TRAIL	TNF-related apoptosis-inducing ligand

TWSGI	Twisted gastrulation I
Τα	Total alpha
Τβ	Total beta
Τγ	Total gamma
UIBC	Unsaturated iron binding capacity
WBCs	White blood cells
WG	Within Groups
α1	Alpha 1
α2	Alpha 2
α2-Μ	Alpha-2-Macroglobulin
β1	Beta 1
β2	Beta 2
γ1	Gamma 1
γ2	Gamma 2

List of Tables

Page

Table 1: One-way ANOVA to test the effect of oral intake dose of diazinon alone (0, 17.5, 35 mg/kg b.w.) and in the presence of curcumin (200 mg/kg diet) on the levels of IL-6 and TNF- α in serum of male rats.	55
Table 2: The levels of IL-6 and TNF- α in serum of male rats after 28 days intake of diazinon in absence and presence of curcumin	56
Table 3: One-way ANOVA to test the effect of oral intake dose of diazinon alone (0, 17.5, 35 mg/kg b.w.) and in the presence of curcumin (200 mg/kg diet) on the levels of Hepcidin and EPO in serum of male rats.	59
Table 4: The levels of Hepcidin and EPO in serum of male rats after 28 days intake of diazinon in absence and presence of curcumin.	60
Table 5A: One-way ANOVA to test the effect of oral intake dose of diazinon alone (0, 17.5, 35 mg/kg b.w.) and in the presence of curcumin (200 mg/kg diet) on the levels of RBCs, WBCs, LYM and PLT in blood of male rats	64
Table 5B: One-way ANOVA to test the effect of oral intake dose of diazinon alone (0, 17.5, 35 mg/kg b.w.) and in the presence of curcumin (200 mg/kg diet) on the levels of Hb, Hct, MCV, MCH and MCHC of male rats.	65
Table 6: Blood profile of male rats after 28 days intake of diazinon in absence and presence of curcumin	66
Table 7A: One-way ANOVA to test the effect of oral intake dose of diazinon alone (0, 17.5, 35 mg/kg b.w.) and in the presence of curcumin (200 mg/kg diet) on the levels of iron, TIBC and UIBC in serum of male rats.	72
Table 7B: One-way ANOVA to test the effect of oral intake dose of diazinon alone (0, 17.5, 35 mg/kg b.w.) and in the presence of curcumin (200 mg/kg diet) on the levels of iron saturation % and ferritin in serum of male rats.	73

Table 8: The levels of iron, TIBC, UIBC, iron saturation % and74ferritin in serum of male rats after 28 days intake of diazinon in
absence and presence of curcumin.74

Table 9A: One-way ANOVA to test the effect of oral intake dose79of diazinon alone (0, 17.5, 35 mg/kg b.w.) and in the presence of
curcumin (200 mg/kg diet) on the levels of TP, TAlb and TGlb in
male rats.79

Table 9B: One-way ANOVA to test the effect of oral intake dose 80 of diazinon alone (0, 17.5, 35 mg/kg b.w.) and in the presence of curcumin (200 mg/kg diet) on the T α , T β , T γ and A/G ratio in serum of male rats.

Table 10: The levels of TP, TAlb, TGlb, T α , T β , T γ and A/G ratio 81 in serum of male rats after 28 days intake of diazinon in absence and presence of curcumin.

Table 11A: One-way ANOVA to test the effect of oral intake dose of diazinon alone (0, 17.5, 35 mg/kg b.w.) and in the presence of curcumin (200 mg/kg diet) on the levels of subfractions of serum protein PreAlb, Alb, α 1 and α 2 in male rats.

Table 11B: One-way ANOVA to test the effect of oral intake dose of diazinon alone (0, 17.5, 35 mg/kg b.w.) and in the presence of curcumin (200mg/kg diet) on the levels of subfractions of serum protein β 1, β 2, γ 1, and γ 2 in male rats.

Table 12: The levels of subfractions of serum protein (Pre Alb, Alb, $\alpha 1$, $\alpha 2$, $\beta 1$, $\beta 2$, $\gamma 1$ and $\gamma 2$) of male rats after 28 days intake of diazinon in absence and presence of curcumin.

Table 13: One-way ANOVA to test the effect of oral intake dose of91diazinon alone (0, 17.5, 35 mg/kg b.w.) and in the presence of91curcumin (200 mg/kg diet) on the oxidative stress biomarkers in11liver of male rats.12

Table 14: The levels of oxidative stress biomarkers in the liver of92male rats after 28 days intake of diazinon in absence and presenceof curcumin.

Table 15: One-way ANOVA to test the effect of oral intake dose96of diazinon alone (0, 17.5, 35 mg/kg b.w.) and in the presence of96curcumin (200 mg/kg diet) on the oxidative stress biomarkers in96kidney of male rats.96

Table 16: The levels of oxidative stress biomarkers in the kidney97of male rats after 28 days intake of diazinon in absence andpresence of curcumin.

Table 17: One-way ANOVA to test the effect of oral intake dose of101diazinon alone (0, 17.5, 35 mg/kg b.w.) and in the presence ofcurcumin (200 mg/kg diet) on the oxidative stress biomarkers inspleen of male rats.

Table 18: The levels of oxidative stress biomarkers in the spleen of102male rats after 28 days intake of diazinon in absence and presenceof curcumin.

Table 19: One-way ANOVA to test the effect of oral intake dose of106diazinon alone (0, 17.5, 35 mg/kg b.w.) and in the presence of curcumin(200 mg/kg diet) on the activities of ALT, AST and ALP in serum of malerats.

Table 20: The activities of ALT, AST and ALP in serum of male107rats after 28 days intake of diazinon in absence and presence of
curcumin.107

Table 21: One-way ANOVA to test the effect of oral intake dose of110diazinon alone (0, 17.5, 35 mg/kg b.w.) and in the presence ofcurcumin (200 mg/kg diet) on thelevels of creatinine and urea inserum of male rats.

Table 22: The levels of creatinine and urea in serum of male rats111after 28 days intake of diazinon in absence and presence of
curcumin.111

Table 23. The relationships between hepcidin and serum IL-6, 115 TNF- α , EPO, iron, ferritin, TIBC, UIBC and iron saturation % in groups 2, 3, 4, 5 and 6.

List of Figures

Figure 1	Chemical structure of diazinon.	9
Figure 2	Hepcidin and iron homeostasis.	17
Figure 3	Iron metabolism and hepcidin.	19
Figure 4:	Systemic iron homeostasis and regulation of hepcidin expression.	22
Figure 5:	Inflammation increases interleukin-6 production.	23
Figure 6:	Structures of Curcumin (Diferuloylmethane), Demethoxycurcumin, and Bisdemethoxycurcumin.	25
Figure 7:	Serum IL-6 levels in male rats of the different studied groups.	57
Figure 8:	Serum TNF- α levels in male rats of the different studied groups.	57
Figure 9:	Serum hepcidin levels in male rats of the different studied groups.	61
Figure 10:	Serum EPO levels in male rats of the different studied groups.	61
Figure 11:	RBCs (A), Hb (B) and HCT(C) levels in male rats of the different studied groups.	67
Figure 12:	MCH (A), MCV (B) and MCHC (C) levels in male rats of the different studied.	68
Figure 13:	WBCs (A), LYM % (B) and PLT (C) levels in male rats of the different studied groups.	69
Figure 14:	Serum levels of iron (A), TIBC (B) and UIBC (C) in male rats of the different studied groups.	75
Figure 15:	Serum levels of iron saturation % (A) and ferritin (B) in male rats of the different studied groups.	76

Figure 16:	Fractions percent of serum protein electrophoretic pattern in the different studied groups.	87
Figure 17 A:	Levels of total and main fractions of serum protein of male rats in the different studied groups.	88
Figure 17 B:	Levels of subfractions of serum protein of male rats in different studied groups	88
Figure 18:	The levels of oxidative stress biomarkers in the liver of male rats in different studied groups.	93
Figure 19:	The levels of oxidative stress biomarkers in the kidneys of male rats in different studied groups.	98
Figure 20:	The levels of oxidative stress biomarkers in the spleen of male rats in different studied groups.	103
Figure 21:	Serum activities of ALT (A), AST (B) and ALP (C) in male rats of the different studied groups.	108
Figure 22:	Serum levels of creatinine (A) and urea (B) in male rats of the different studied groups.	112
Figure 23:	Correlation between hepcidin and IL-6 in serum of male rats in the different studied groups.	116
Figure 24:	Correlation between hepcidin and TNF- α in serum of male rats in the different studied groups.	116
Figure 25:	Correlation between hepcidin and EPO in serum of male rats in the different studied groups.	117
Figure 26:	Correlation between hepcidin and iron in serum of male rats in the different studied groups.	117
Figure 27:	Correlation between hepcidin and TIBC in serum of male rats in the different studied groups.	118
Figure 28:	Correlation between hepcidin and UIBC in serum of male rats in the different studied groups.	118
Figure 29:	Correlation between hepcidin and iron saturation % in serum of male rats in the different studied groups.	119

Figure 30:Correlation between hepcidin and ferritin in serum119of male rats in the different studied groups.

List of Plates

Page

Plate 1:	Photomicrographs of liver sections (A),(B),(C)	122
Plate 2:	Photomicrographs of liver sections (A),(B),(C)	123
Plate 3:	Photomicrographs of Kidney sections (A),(B),(C), (D)	124
Plate 4:	Photomicrographs of Kidney sections (A),(B),(C)	125
Plate 5:	Photomicrographs of Spleen sections (A),(B),(C)	126
Plate 6:	Photomicrographs of Spleen sections (A),(B),(C)	127

CONTENTS

Page

Introduction and aim of the work	1
Review of literature	4
Materials and methods	30
Results	54
Discussion	127
Summary	149
References	154
Arabic summary	