LIST OF ABBREVIATIONS

AACC: American Association of Cereal Chemists **AOAC** : Association of Official Analytical Chemists AWRC: Alkaline water retention capacity **BG:** β-Glucan **BBG:** Barley β -glucan **cp:** centipoises **DF:** Dietary fiber **DRI:** Dietary Reference Intakes **EFSA:** European Food Safety Authority **FAC:** Fat absorption capacity FAOSTAT: Food and Agriculture Organization of the United Nations FDA: Food and drugs administration FNB: Food Nutrition Board FSANZ: Food Standards Australia and New Zealand **GI:** Glycemic index GOP: Glucose- oxidase -peroxidase **HB:** Hull less barley **HGCA:** Home-Grown Cereals Authority **IDF:** Insoluble Dietary Fiber **IPA:** Iso-propanol **LSD:** Least significance differences **NHANES:** The National Health and Nutrition Examination Survey **OB:** Oat β -glucan (Nutrim) **PBF:** Pearled barley flour **SDF:** Soluble dietary fiber **TDF:** Total dietary fiber **TPC:** Total phenolic content **USDA:** United States Department of Agriculture **WBF** : Whole barley flour WHC: Water Hydration Capacity

CONTENTS

Abstract

1. LITERATURE REVIEW

1.1. Introduction	1
1.2. Chemical Composition of Barley	4
1.3. Phytochemical Contents and Antioxidant Properties of	
barley	5
1.4. Beta Glucan Content in Barley	9
1.5. Extraction of β- glucan	12
1.6. Rheological Properties of Barley β-glucan	16
1.7. Health Benefits of Barley and β-glucan in Food	
products	17
1.8. β-Glucan as Fat Replacer in Foods	22
1.9. Egg Replacers	26

2. MATERIALS AND METHODS

2.1. Materials	28
2.2. Methods	28

3. RESULTS AND DISCUSSION

PARTI	
Environmental and Chemical Studies on Some Extracted Active	
Components of Barley	61

PART II

PART III

UTILIZATION OF BARLEY AND ITS EXTRACTED

β-GLUCAN IN CAKE CHARACTERISTICS IMPROVEMENT... 112

Ι

PART IV

Influence of Utilization of Barley and Its β-Glucan Extract on The	
Quality of Bread Products	132
CONCLUSIONS	171
SUMMARY	172
REFERENCES	175

LIST OF TABLES

1. LITERATURE REVIEW

2	Table	(1.1.): Fat content of different bakery products	23
---	-------	--	----

2. MATERIALS AND METHODS

Table (2.1.): Formula of pan bread	50
Table (2.2.): Formula of soft cake	52
Table (2.3.): Formula of white layers cake	54
Table (2.4.): Formula of angel food cake	55

3. RESULTS AND DISCUSSION

PART I

Table (3.1.1.): Chemical composition of raw materials of barley flour and	
barley bran (dry weight basis)	62
Table (3.1.2.): Total, Soluble, Insoluble Dietary Fiber and Total, Soluble,	
Insoluble β-Glucan of Used Raw Materials	63
Table (3.1.3.): Percentage of Recovery of β-Glucan Content (%)	66
Table (3.1.4.): Proximate analysis of extracted β -glucan gum pellet	70
Table (3.1.5.): Functional properties of β-glucan pellet	72
Table (3.1.6.): The effect of different concentrations of extracted β -	
glucan and different shear rates on viscosity of extracted	
β-glucan	74
PART II	
Table (3.2.1.): Batter characteristics as influenced by fat replacer (β -	
Glucan) levels and physical properties of low calories cakes prepared with different fat replacer levels	70
cakes prepared with anterent lat replacer revers	1)

Table (3.2.2.): Batter characteristics as influenced by egg white	
Replacer (β -glucan) levels and physical properties of	
angel food cakes (fat free) prepared with different egg	
replacer levels	82
Table (3.2.3.): Foaming stability of egg white and egg white	
substituted by different levels of β-glucan	83
 Table (3.2.4.): Chemical composition of low calorie white layers cakes prepared with different fat replacer levels by β-lucan Table (3.2.5.): Chemical composition of angel food cakes (fat free) prepared with different egg white levels by β- 	86
glucan Table (3.2.6.): Sensory evaluation of low calorie white layers cakes Prepared with different fat replacer levels by	89
β- glucan Table (3.2.7.): Sensory evaluation of angel food cakes (fat free) prepared with different egg white replacer levels by β-	92 95
Table (3.2.8.): Crust and crumb colors of low calorie white layers cakes prepared with different fat replacer levels by β- glucan.	93 97
Table (3.2.9.): Crust and crumb colors of angel food cakes (fat free) prepared with different egg white replacer levels by β- glucan	99
Table (3.2.10.): Moisture contents (%) of low calorie white layers cakes prepared with different fat replacer levels by β- glucan during the storage periods	102
Table (3.2.11.): Moisture contents (%) of angel food cakes (fat free) prepared with different egg replacer levels by β- glucan during the storage periods	103
Table (3.2.12.): Texture parameters of low calorie white layers cakes prepared with different fat replacer levels by β -glucan	105
during the storage periods Table (3.2.13.): Texture parameters of angel food cakes (fat free) prepared with different egg white replacer levels by β-	107
glucan during the storage periods	110

PART III

Table (3.3.1.): Estimation of phytochemical components in barley flour	115
Table (3.3.2.): Physical properties of cake made by partially replaced	
with extracted β-glucan and barleylour Table (3.3.3.): Sensory evaluation of soft cakes made by partial Substitution of wheat flour by β-glucan and barley flour	117 118
Table (3.3.4.): Chemical composition of soft cakes made by wheat flour partially substituting by barley flour and extracted β -glucan.	121
Table (3.3.5.): Crust and crumb colors of cakes made by wheat flour partially substituting by barley flour and extracted β-glucan	124
Table (3.3.6.): Moisture contents (%) of cakes made by wheat flour partially substituting by barley flour and its β-glucan extract during the storage periods	127
Table (3.3.7.): Texture parameters of cakes made by wheat flour partial substituting by barley flour and extracted β- glucan during the storage periods	130
PART IV Table (3.4.1.): Physical properties of pan breads made by barley flour and extracted β-glucan as partial substitutes f wheat flour	134
barley flour and β-glucan as partial substitutes of wheat flour Table (3.4.3.): Chemical composition of pan breads made using	. 139
barley flour and β -glucan as partial substitutes of	
wheat flour	141
Table (3.4.4.): Minerals in all products made using barley flour and β - glucan as partial substitutes of wheat flour (mg/100g)	144
Table (3.4.5.): Sensory evaluation of balady bread made using barley Flour and β -glucan as partial substitutes of	
wheat flour.	149
Table (3.4.6.): Sensory evaluation of pan bread made using β- glucan and barley flour as partial substitutes of wheat flourTable (3.4.7.): Crust and crumb colors of balady bread using beta	151

glucan and barley flour as partial substitutes of wheat flour	. 155
Table (3.4.8.): Crust and crumb colors of pan bread made using β -	
glucan and barley flour as partial substitutes of wheat	
flour	156
Table (3.4.9.): Moisture contents (%) of balady bread made using β -	
glucan and barley flour as partial substitutes of wheat	
flour during the storage periods	158
Table (3.4.10.): Moisture contents (%) of pan bread made using	
β -glucan and barley flour as partial substitutes of	
wheat flour during the storage periods	161
Table (3.4.11.): Alkaline water retention capacity (%) of balady bread	
made using beta glucan and barley flour as partial	
substitutes of wheat flour during the storage periods	165
Table (3.4.12.): Texture parameters of pan bread made by partially	
replaced of flour with β - glucan and barley flour	169

LIST OF FIGURES

44

1. LITERATURE REVIEW

Fig. 1.1.: Basic structure of β -glucans in cereals with combined bonds	
β - (1 \rightarrow 3) and β - (1 \rightarrow 4)	9
Fig. 1.2.: Extraction and purification of β -glucans from barley and oats	
(Biliaderis and Izydorczyk, 2007)	14
2. MATERIALS AND METHODS	
Fig. (2.1.): Flow sheet of milling and sieving of barley grains	29
Fig. (2.2.): Water extraction of β -glucan from barley bran	32
Fig. (2.3.): Aqueous-alkaline extraction process for beta-glucan	
concentration (Wood et al., 1989)	34
Fig. (2.4.): Flow diagram for the enzymatic extraction and purification	
of β -glucan from bran in the laboratory (Bhatty, 1993)	35
Fig. (2.5.): Quantitative extraction procedure for (A) soluble and (B)	
total β -glucan determination in cereal-based food products	44

3. RESULTS AND DISCUSSION

PART I

Fig (3.1.1.): Total, Soluble, Insoluble Dietary Fiber and Total,	
Soluble, Insoluble β -Glucan of Barley flour and bran	64
Fig (3.1.2.): Percentage of Recovery of β -Glucan Content (%) by	
Water Extraction, Water-Alkaline Extraction and Alkalin	
Enzymatic Extraction method	67
Fig (3.1.3.): HPLC Chromatogram for Extracted β- glucan	69
Fig (3.1.4.): The effect of different concentrations of extracted	
β - glucan and different shear rates on viscosity of extracted	
β-glucan	75

PART II

Fig (3.2.1.): Comparison of specific volume measurements of white	
layers Cakes made using β-glucan as fat replacer	80
Fig (3.2.2.): Comparison of specific volume measurements of angel	
food cakes	83
Fig (3.2.3.): Chemical composition of low calorie white layers cakes	
prepared with different fat replacer levels by β -glucan (on	
dry weight basis)	87
Fig (3.2.4.): Chemical composition of angel food cakes (fat free)	

prepared with different egg replacer levels by β -glucan	90
Fig (3.2.5.): Sensory evaluation of low calorie white layers cakes	
prepared with different fat replacer levels by	
β- glucan	93
Fig (3.2.6.): Sensory evaluation of angel cakes (fat free) prepared with	
different egg replacer levels by β -glucan	95
Fig (3.2.7.): Crust and crumb colors of white layers cakes prepared with	
different fat replacer levels by β-glucan	98
Fig (3.2.8.): Crust and crumb colors of angel food cakes (fat free)	
prepared with different egg replacer levels by β - glucan	100
Fig (3.2.9.): Moisture decrement (%) of angel food cakes prepared with	
different egg replacer levels by β - glucan during the storage	
periods	104
Fig (3.2.10.): Moisture decrement (%) of angel food cakes prepared with	
different egg replacer levels by β - glucan during the storage	
periods	104
Fig (3.2.11.): Texture parameters of low calorie white layers cakes	
prepared with different fat replacer levels by β -glucan	
during the storage periods	108
Fig (3.2.12.): Texture parameters of angel food cakes (fat free) prepared	
with different egg white replacer levels by β -glucan during	
the storage periods	111

PART III

Fig (3.3.1.):	Sensory evaluation of cakes made by partially replaced	
	with β -glucan and barley flour	119
Fig (3.3.2.):	Chemical composition of soft cakes made by wheat flour	
	partially substituting by barley flour and extracted β-	
	glucan	122
Fig (3.3.3.):	Crust and crumb colors of cakes made by wheat flour	
	partially substituting by barley flour and its β - glucan	
	extract	125
Fig (3.3.4.):	Moisture decrement (%) of cakes made by wheat flour	
	partially substituting by barley flour and extracted β -	
	glucan during the storage periods	128
Fig (3.3.5.):	Change in texture parameters of soft cakes made by	
- · · ·	barley flour and its β -glucan extracts as partial substitutes	
	of wheat flour during the storage periods	131

PART IV

Fig (3.4.1.): Specific volume of pan breads made by barley flour and	
extracted β -glucan as partial substitutes of wheat flour	135
Fig (3.4.2.): Chemical compositions of balady breads made using	
barley flour and β -glucan as partial substitutes of wheat	
flour	140
Fig (3.4.3.): Chemical composition of pan breads made using barley	
flour and β -glucan as partially substitutes	
of wheat flour	142
Fig (3.4.4.): Minerals content in cakes, pan and balady breads in	
mg/100g	145
Fig (3.4.5.): Sensory evaluation of balady bread made using	
Barley flour and β -glucan as partially substitutes of wheat	
flour	150
Fig (3.4.6.): Sensory evaluation of pan bread made by adding β -	
glucan and made by partially replaced with	
barley flour	152
Fig (3.4.7.): Moisture decrement (%) of balady breads made by wheat	
flour partially substituting by barley flour and extracted β -	
glucan during the storage periods	159
Fig (3.4.8.): Moisture decrement (%) of balady breads made by wheat	
flour partially substituting by barley flour and extracted β -	
glucan during the storage periods	162
Fig (3.4.9.): percentage loss of freshness of balady bread made using β -	
glucan and barley flour as partial substitutes of wheat	
flour during storage period	166
Fig (3.4.10.): Change in texture parameters of pan bread made by barley	
flour and β -glucan as partial substitutes of wheat	
flour during the storage periods	170

ABSTRACT

Much attention has been paid recently to improving the nutritional value of foods. Notably, cereal foods have been negatively affected with the popularity of "nutritional" diets, such as the Atkins diet. Barley (Hordeum vulgaris L), is an ancient crop plant, and is also one of the world's most cultivated cereal crops. B-glucan is the effective naturally occurring compound that exists in the barley grains, which is a rich fiber fraction found as glucose polymer in the endosperm cell walls of barley and usually at a level of 2-8 % of grain weight. The objective of this study was to investigate the possibility of improving the bakery products by incorporation of high dietary fiber compound as β -glucan extracted from barley and the barley itself. Different extraction processes were analyzed in terms of their effects on β -glucan yield, processing characteristics and cost effectiveness. Extraction treatment affected the vield of barley β-glucan (BBG) fiber fraction, and β-glucan recovery efficiency ($P \le 0.05$). Functional properties of extracted β -glucan gum as solubility, viscosity, foaming properties, water hydration and fat absorption capacities were determined. Its chemical composition and physical properties make it a functional ingredient which can be used in different healthy food products, thus its health benefits are linked to its high viscosity and its nature as a soluble dietary fiber. These characteristics make it suitable as a fat replacer in food products, and repeated trails were carried out to incorporate it in cake as egg replacer by different levels of substitution (0, 25 and 50%). Low calories white layers cake was prepared using β -glucan as fat replacer by different levels of substitution (0, 50 and 75%). Also, different products as soft cake, pan and balady breads were made using whole barley flour and β glucan as partial substitutes of wheat flour. It was necessary to accomplish this investigation to study the physical, chemical and phytochemical properties of the above constituents. Also, physical properties, chemical compositions, sensory evaluation and staling rate of all prepared products were evaluated. The results of this study showed that the prepared products have acceptable nutrition values.

Keywords: Cereal foods, β -glucan, extraction processes, food products, phytochemical properties, nutrition values.