Table of Contents

Abstract	Ι
Acknowledgement	II
Table of Contents	III
List of Abbreviations	V
List of Tables	VII
List of Figures	Х
Introduction	1
Review of Literature	4
Pomegranate	4
Origin and Cultivating Regions	8
Physiochemical properties of pomegranate	9
Bioactive components	11
Sensory properties of pomegranate fruit	16
Pomegranate Juice	16
Cloudy stability of pomegranate	18
Carrot	20
World Production	21

Carrot cultivation	22
Physiochemical properties of carrot	23
Carrot Juice	31
Cloudy stability of carrot	32
Materials and Methods	40
Materials	40
Methods	40
Results and Discussion	49
Part1: Effect of arils or juice incubation temperature on physicochemical and sensory evaluation of pomegranate juice during storage period.	49
Part2, section A: Effect of commercial pectic enzyme on physicochemical and sensory evaluation of carrot juice during storage period.	73
Part2, section B: Effect of hydrocolloid as (CMC) on physicochemical and sensory evaluation of carrot juice during storage period.	101
Summary	132
References	139
الموجز العربي	¢
الملخص العربي	ب

List of Abbreviations

ABTS	2, 2'-azino-bis (3-
	ethylbenzothiazoline–6-sulfonic acid)
ANOVA	Analysis of variance
BD	Browning degree
СЈС	Carrot juice concentrate
СМС	Carboxy methylcellulose
DPPH	2, 2-diphenyl-1-picrylhydrazyl
EA	Ellagic acid
ЕМТ	Enzymatic mash treatment
ETs	Ellagitannins
FAO	Food and Agriculture Organization
FG	Flaxseed gum
GTs	Gallotannins
ННР	High hydrostatic pressure
HMF	5-hydroxymethylfurfural
НРР	High pressure processing
LBG	Locust bean gum
LDL	Low Density Lipoprotein
LMP	Low-methoxy pectin
МАР	Modified atmosphere packaging

PAJS	Pomegranate arils juice sample
PEF	Pulsed Electric Field
PIJS	Pomegranate incubated Juice Sample
РЈ	Pomegranate juice
PVPP	Poly Vinyl Poly Pyrrolidone
RDA	Recommended Daily Allowance
RV	Relative viscosity
SD	Standard deviation
ТА	Titratable acidity
ТАА	Total amino acid
ТВА	Thiobarbituric acid
TEAC	Trolox equivalent antioxidant capacity
ТРС	Total phenolic content
TPs	Total phenolics
TS	Total sugar
TSS	Total Soluble Solids
XG	Xanthan gum

List of Tables

Table No.	Title	Page No.
I.	Principal constituents of different parts of pomegranate tree and fruit.	5
1.	Effect of arils or juice incubation at different temperature on pH of	50
	pomegranate juice during storage period.	
2.	Effect of arils or juice incubation at different temperature on total	51
	Acidity (%)of pomegranate juice during storage period.	
3.	Effect of arils or juice incubation at different temperature on ascorbic	52
	acid (mg/100g) of pomegranate juice during storage period.	
4.	Effect of arils or juice incubation at different temperature on TSS % of	54
	pomegranate juice during storage period.	
5.	Effect of arils or juice incubation at different temperature on total	55
	phenolic contents (mg/100ml) of pomegranate juice during storage	
	period.	
6.	Effect of arils or juice incubation at different temperature on	58
	anthocyanin contents (mg/100g) of pomegranate juice during storage	
	period.	
7.	Effect of arils or juice incubation at different temperature on	59
	antioxidant scavenging activity; 2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) %	
	of pomegranate juice during storage period.	
8.	Effect of arils or juice incubation at different temperature on	60
	antioxidant 2, 2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS)	
	% of pomegranate juice during storage period.	
9.	Effect of arils or juice incubation at different temperature on turbidity	62
	(O.D.) of pomegranate juice during storage period.	
10.	Effect of arils or juice incubation at different temperature on color index	64
	of pomegranate juice during storage period.	
11.	Effect of arils or juice incubation at different temperature on color L, a',	66
	b' of pomegranate juice during storage period.	
12.	Effect of arils or juice incubation at different temperature on	68
	microbiological evaluation of pomegranate juice during storage period.	
13.	Effect of arils or juice incubation at different temperature on sensory	70
	evaluation of pomegranate juice during storage period.	
14.	Total acidity (%) of cloudy carrot juices produced by using commercial	74
	pectin enzyme with different incubation time during storage period at 4	
	°C ±1.	
15.	pH changes in cloudy carrot juices produced by using commercial pectin	75
	enzyme with different incubation time during storage period at 4 \circ C ±1.	
16.	TSS % in of cloudy carrot juices produced by using commercial pectin	78
	enzyme with different incubation time during storage period at 4 °C ±1.	

17.	HMF (mg/100ml) of cloudy carrot juices produced by using commercial	79
	pectin enzyme with different incubation time during storage period at 4	
	∘C ±1.	
18.	Carotenoids (mg/L) of cloudy carrot juices produced by using	82
	commercial pectin enzyme with different incubation time during	
	storage period at 4 ∘C ±1.	
19.	Flavonoids (mg/100ml) of cloudy carrot juices produced by using	84
	commercial pectin enzyme with different incubation time during	
	storage period at 4 ∘C ±1.	
20.	Total phenolic compounds (mg/100g) of cloudy carrot juices produced	86
	by using commercial pectin enzyme with different incubation time	
	during storage period at 4 ∘C ±1.	
21.	2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) % of cloudy carrot juices produced	88
	by using commercial pectin enzyme with different incubation time	
	during storage period at 4 ∘C ±1.	
22.	2, 2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS)	89
	(mg/100ml) of cloudy carrot juices produced by using commercial pectin	
	enzyme with different incubation time during storage period at 4 \circ C ±1.	
23.	Turbidity changes (OD) of cloudy carrot juices produced by using	92
	commercial pectin enzyme with different incubation time during	
	storage period at 4 ∘C ±1.	
24.	Color index of cloudy carrot juices produced by using commercial pectin	93
	enzyme with different incubation time during storage period at 4 \circ C ±1.	
25.	Color L, a', b' of cloudy carrot juices produced by using commercial	95
	pectin enzyme with different incubation time during storage period at 4	
	∘C ±1.	
26.	Microbial count, yeast and mold of cloudy carrot juices produced by	97
	using commercial pectin enzyme with different incubation time during	
	storage period at 4 ∘C ±1.	
27.	Sensory evaluation of cloudy carrot juices produced by using	100
	commercial pectin enzyme with different incubation time during	
	storage period at 4 °C ±1.	
28.	Total Acidity (%) of cloudy carrot juices prepared by using hydrocolloid	102
	Carboxymethyl cellulose (CMC) plus commercial pectin enzyme with	
	different incubation time during storage period at 4 $^{\circ}$ C ± 1.	
29.	pH of cloudy carrot juices prepared by using hydrocolloid	104
	Carboxymethyl cellulose (CMC) plus commercial pectin enzyme with	-
	different incubation time during storage period at 4 °C ± 1.	
20	TSS % of cloudy carrot jujces propared by using bydrocolloid	105
50.	Carboyymethyl cellulose (CMC) plus commercial pactin onzyme with	105
	different incubation time during storage period at 1° C + 1	
-	unerent incubation time during storage periou at 4 C ± 1.	
31.	HMF (mg/100ml) of cloudy carrot juices prepared by using hydrocolloid	107
	Carboxymethyl cellulose (CMC) plus commercial pectin enzyme with	
	different incubation time during storage period at 4 $^{\circ}$ C ± 1.	

32.	Carotenoids contents (mg/L) of cloudy carrot juices prepared by using	108
	hydrocolloid Carboxymethyl cellulose (CMC) plus commercial pectin	
	enzyme with different incubation time during storage period at 4 °C \pm 1.	
33.	Flavonoids contents (mg/100ml)of cloudy carrot juices prepared by	110
	using hydrocolloid Carboxymethyl cellulose (CMC) plus commercial	
	pectin enzyme with different incubation time during storage period at 4	
	°C ± 1.	
34.	Total phenolic compounds (mg/100g) of cloudy carrot juices prepared	112
	by using hydrocolloid Carboxymethyl cellulose (CMC) plus commercial	
	pectin enzyme with different incubation time during storage period at 4	
	°C ± 1.	
35.	Scavenging activity (DPPH) % of cloudy carrot juices prepared by using	114
	hydrocolloid Carboxymethyl cellulose (CMC) plus commercial pectin	
	enzyme with different incubation time during storage period at 4 °C \pm 1.	
36.	ABTS (mg/100ml) of cloudy carrot juices prepared by using hydrocolloid	115
	Carboxymethyl cellulose (CMC) plus commercial pectin enzyme with	
	different incubation time during storage period at 4 $^{\circ}$ C ± 1.	
37.	Turbidity (OD) of cloudy carrot juices prepared by using hydrocolloid	119
	Carboxymethyl cellulose (CMC) plus commercial pectin enzyme with	
	different incubation time during storage period at 4 $^{\circ}$ C ± 1.	
38.	Color index of cloudy carrot juices prepared by using hydrocolloid	121
	Carboxymethyl cellulose (CMC) plus commercial pectin enzyme with	
	different incubation time during storage period at 4 $^{\circ}$ C ± 1.	
39.	Color L, a', b' of cloudy carrot juices prepared by using hydrocolloid	123
	Carboxymethyl cellulose (CMC) plus commercial pectin enzyme with	
	different incubation time during storage period at 4 $^{\circ}$ C ± 1.	
40.	Total bacterial count, yeast and mold of cloudy carrot juices prepared by	126
	using hydrocolloid Carboxymethyl cellulose (CMC) plus commercial	
	pectin enzyme with different incubation time during storage period at	
	4 °C ± 1.	
41.	Sensory evaluation of cloudy carrot juices prepared by using	127
	hydrocolloid Carboxymethyl cellulose (CMC) plus commercial pectin	
	enzyme with different incubation time during storage period at 4 °C ±1.	

List of Figures

Figure No.	Title	Page No.
Ι	World Carrot Production	22
II	Chemical structure of common carotenoids	28
1.	Effect of arils or juice incubation at different temperature on pH of pomegranate juice during storage period.	50
2.	Effect of arils or juice incubation at different temperature on total Acidity (%)of pomegranate juice during storage period.	51
3.	Effect of arils or juice incubation at different temperature on ascorbic acid (mg/100g) of pomegranate juice during storage period.	53
4.	Effect of arils or juice incubation at different temperature on TSS % of pomegranate juice during storage period.	54
5.	Effect of arils or juice incubation at different temperature on total phenolic contents (mg/100ml) of pomegranate juice during storage period.	56
6.	Effect of arils or juice incubation at different temperature on anthocyanin contents (mg/100g) of pomegranate juice during storage period.	57
7.	Effect of arils or juice incubation at different temperature on antioxidant scavenging activity; 2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) % of pomegranate juice during storage period.	60
8.	Effect of arils or juice incubation at different temperature on antioxidant 2, 2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) % of pomegranate juice during storage period.	61
9.	Effect of arils or juice incubation at different temperature on turbidity (O.D.) of pomegranate juice during storage period.	63
10.	Effect of arils or juice incubation at different temperature on color index of pomegranate juice during storage period.	64
11.	Effect of arils or juice incubation at different temperature on color L, a', b' of pomegranate juice during storage period.	67
12.	Effect of arils or juice incubation at different temperature on sensory evaluation of pomegranate juice during storage period.	71
13.	Total acidity (%) of cloudy carrot juices produced by using commercial pectin enzyme with different incubation time during storage period at 4 °C ±1.	74
14.	pH changes in cloudy carrot juices produced by using commercial pectin enzyme with different incubation time during storage period at 4 °C ±1.	76
15.	TSS % in of cloudy carrot juices produced by using commercial pectin enzyme with different incubation time during storage period at $4 \circ C \pm 1$.	77

16.	HMF (mg/100ml) of cloudy carrot juices produced by using commercial	80
	pectin enzyme with different incubation time during storage period at $4 \circ C + 1$	
17	4 °C 11.	82
17.	commercial pectin enzyme with different incubation time during	02
	storage period at $4 \circ C \pm 1$.	
18.	Flavonoids (mg/100ml) of cloudy carrot juices produced by using	84
	commercial pectin enzyme with different incubation time during	
	storage period at 4 °C ±1.	
19.	Total phenolic compounds (mg/100g) of cloudy carrot juices produced	86
	by using commercial pectin enzyme with different incubation time	
	during storage period at 4 °C ±1.	
20.	2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) % of cloudy carrot juices	88
	produced by using commercial pectin enzyme with different incubation	
01	time during storage period at 4 °C ±1.	00
21.	2, 2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS)	90
	(mg/100ml) of cloudy carrot juices produced by using commercial	
	A ∘C +1	
22	Turbidity changes (OD) of cloudy carrot juices produced by using	92
22.	commercial pectin enzyme with different incubation time during	12
	storage period at $4 \circ C \pm 1$.	
23.	Color index of cloudy carrot juices produced by using commercial	93
	pectin enzyme with different incubation time during storage period at	
	4 °C ±1.	
24.	Color L, a', b' of cloudy carrot juices produced by using commercial	96
	pectin enzyme with different incubation time during storage period at	
	4 ∘C ±1.	
25.	Sensory evaluation of cloudy carrot juices produced by using	99
	commercial pectin enzyme with different incubation time during	
26	storage period at 4 °C ±1.	102
26.	Total Acidity (%) of cloudy carrot juices prepared by using hydrocolloid	103
	different incubation time during storage period at $4 ^{\circ}\text{C} + 1$	
27	nH of cloudy carrot juices prepared by using bydrocolloid	104
27.	Carboxymethyl cellulose (CMC) plus commercial pectin enzyme with	104
	different incubation time during storage period at 4 °C \pm 1.	
28.	TSS % of cloudy carrot juices prepared by using hydrocolloid	106
	Carboxymethyl cellulose (CMC) plus commercial pectin enzyme with	
	different incubation time during storage period at 4 $^{\circ}$ C ± 1.	
29.	HMF (mg/100ml) of cloudy carrot juices prepared by using hydrocolloid	107
	Carboxymethyl cellulose (CMC) plus commercial pectin enzyme with	
	different incubation time during storage period at 4 °C ± 1.	
30.	Carotenoids contents (mg/L) of cloudy carrot juices prepared by using	108
	hydrocolloid Carboxymethyl cellulose (CMC) plus commercial pectin	
	enzyme with different incubation time during storage period at 4 °C ±	

	1.	
31.	Flavonoids contents (mg/100ml)of cloudy carrot juices prepared by	110
	using hydrocolloid Carboxymethyl cellulose (CMC) plus commercial	
	pectin enzyme with different incubation time during storage period at	
	4 °C ± 1.	
32.	Total phenolic compounds (mg/100g) of cloudy carrot juices prepared	112
	by using hydrocolloid Carboxymethyl cellulose (CMC) plus commercial	
	pectin enzyme with different incubation time during storage period at	
	4 °C ± 1.	
33.	Scavenging activity (DPPH) % of cloudy carrot juices prepared by using	114
	hydrocolloid Carboxymethyl cellulose (CMC) plus commercial pectin	
	enzyme with different incubation time during storage period at 4 °C \pm	
	1.	
34.	ABTS (mg/100ml) of cloudy carrot juices prepared by using	116
	hydrocolloid Carboxymethyl cellulose (CMC) plus commercial pectin	
	enzyme with different incubation time during storage period at 4 °C \pm	
	1.	
35.	Turbidity (OD) of cloudy carrot juices prepared by using hydrocolloid	120
	Carboxymethyl cellulose (CMC) plus commercial pectin enzyme with	
	different incubation time during storage period at 4 $^{\circ}C \pm 1$.	
36.	Color index of cloudy carrot juices prepared by using hydrocolloid	121
	Carboxymethyl cellulose (CMC) plus commercial pectin enzyme with	
	different incubation time during storage period at 4 $^{\circ}$ C ± 1.	
37.	Color L, a', b' of cloudy carrot juices prepared by using hydrocolloid	124
	Carboxymethyl cellulose (CMC) plus commercial pectin enzyme with	
	different incubation time during storage period at 4 $^{\circ}$ C ± 1.	
38.	Sensory evaluation of cloudy carrot juices prepared by using	128
	hydrocolloid Carboxymethyl cellulose (CMC) plus commercial pectin	
	enzyme with different incubation time during storage period at 4 °C ±1.	

Author	Maha El-Sayed Attia Salem
Title	Cloud stabilization of pulpy fruit and vegetable juice
University	Suez Canal University
Department	Food Technology
Location	Ismailia
Degree	Doctor of Philosophy in agriculture science
Language	English
Supervision committee	Prof. / Gamal Ali Mostafa
	Prof. / Amal Abd El-Fattah Ali
	Prof. / Hemmat Ibrahim Maattok
	Ass.Prof. / Sayed Mohamed Mokhtar

Abstract

In this study, effect of incubation of arils or juice at different temperature on physiochemical and organoleptic properties of pomegranate juice at zero time and during storage periods (three months) and select the most suitable method to produce favorable juice especially in nutrients and organoleptic properties. The data showed that all samples had highest content of phenolic and antioxidants.

While the second part included two sections of carrot juice production using commercial pectin enzymes 0.08% with different incubation times at temperature 50 0 C ranging from sixty to hundred fifty minutes to detect the most suitable way and time to produce juice with high quality and producing stable colloid suspension with fine physiochemical and organoleptic characteristics and it was shown the most incubated specimen has the best characteristics.

Increase cloud stabilization, Hydrocolloids like (CMC) had been studied in different values to test the best amount to produce juice with high nutritional and organoleptic characteristics and it was shown that the specimen with 0.30% has the best characteristics. The results showed that improvement in odor, taste, aroma and appearance compared to control.

Key words:

Pomegranate juice - arils incubation- juice incubation- Carrot juice- Commercial pectin enzymes- Hydrocolloids- Carboxymethyl cellulose