CONTENTS

I- INTRODUCTION	1
II- REVIEW OF LITERATURE	5
1. The genus <i>Trichoderma</i> .	5
1.1. General Genomic Features.	6
1.2. Developmental Biology of Trichoderma.	8
1.3.Isolation and identification of <i>Trichoderma</i> .	9
1.4. Morphological Characteristics and Classification.	12
1.4.1. Morphological Characteristics of <i>Trichoderma</i> .	12
1.4.2 Morphological Classification.	13
1.5. Trichoderma as a biocontrol agent.	14
2. Isolation and purification of pathogenic seed-borne	
fungi in legumes.	21
2.1. Pathogencity test.	26
3. Antagonistic activity of <i>Trichoderma</i> in dual culture.	27
4. Applications of Trichoderma in plant growth	
promotion.	32
4.1. <i>Trichoderma</i> as a plant growth promoter.	32
4.2. Trichoderma Specificity	34
4.3. Crop Type.	35
5. <i>Trichoderma</i> enzymes.	36
6. Antibiosis and secondary metabolites.	40
7.Molecular identification of markers in	
Trichoderma spp.	41
III- MATERIAL AND METHODS	43
1. Isolation, purification and identification of	
Trichoderma isolates	43

1.1. Collection of soil samples	43
1.2. Isolation of <i>Trichoderma</i> species from soil	43
2. Isolation, purification and identification of seed-	
borne fungi	44
2.1. Pathongenicity test to seed-borne fungi	44
3. Evaluation of <i>Trichoderma</i> isolates as biocontrol	
agent against legumes seed borne fungi	46
3.1. In vitro	46
3.1.1 Growth rate	46
3.1.2 Antagonism in vitro	46
3.2. Antagonism in vivo	47
3.3 Effect of <i>Trichoderma</i> isolates on plant growth	
promotion	47
3.4 Physiological features of biological control agent	
isolates	48
3.4.1 Assay of enzyme activity	48
3.4.2. β- 1, 3 Glucanase assay	49
3.4.3. Chitinase activity	49
3.4.4. Peroxidase Assay	50
3.4.5. Polyphenol Oxidase Assay	51
3.4.6. Catalase Assay	52
4.Genetic characterization and molecular identification	
of Trichoderma isolates	53
4.1. DNA extraction	53
4.2 PCR amplification	53
4.3. DNA sequencing	54
4.4. Genetic characterization	54
4.4.1. Phylogenetic analysis	54

4.4.1 ACTIN and TEE data analysis	51
4.4.1.ACTIN and TEF data analysis	54
5. Data analysis	55
IV- RESULTS AND DISCUSSION	56
1. Isolation, and purification of the biological control	
agent and seed-borne fungi	56
1.1. Isolation, purification <i>Trichoderma</i> spp	56
1.2. Isolate and purify the definition of pathogenic	
seed-borne fungi in legumes	56
1.2. Pathogenicity Test	60
2. Evaluation of <i>Trichoderma</i> isolates.	62
2.1. Growth rate mm/Day	62
2.2. Antagonism <i>in vitro</i>	63
2.3. Antagonism activity <i>in vivo</i>	66
2.4. Evaluated <i>Trichoderma</i> isolates as plant growth	
promotion on legumes	70
3. <i>Trichoderma</i> –plant–pathogen interactions	79
4. Screening of <i>Trichoderma</i> isolates for enzymes	
activities	87
5. Analysis of variance and heritability for	
Trichoderma characteristics.	92
5.1. Growth rate and enzymes analysis	92
5.2. Antagonism in vitro	92
5.3. Antagonism in vivo	
6. Phylogenetic analysis and molecular identification	
of Trichoderma isolates	94
6.1. ACTIN data set	94
6.1.1. Nucleotide sequences of the ACTIN gene for	
five obtained isolates	95

ARABIC SUMMARY	
VI- REFERENCES	110
V- SUMMARY	104
obtained isolates	100
6.2.1. Nucleotide sequences of the TEF gene for six	
6.2. TEF1 data set	99

LIST OF TABLES

No.	Title	Page
1	Number of Trichoderma isolates isolated from	
	soil samples collected from different locations	
	in the East Delta Region	57
2	Classification Trichoderma isolates into six	
	groups according to their morphological	
	characters	58
3	Incidence of seed-borne fungi isolated from	
	some legumes seeds in East Delta Region	59
4	Percentage of pre, post emergency damping off	
	and survival plants affected by pathogenic seed-	
	borne fungi on some Legumes crops under	
	greenhouse conditions.	61
5	Percentage of reduction in the mycelial growth	
	of some pathogenic seed-borne fungi by	
	Trichoderma isolates.	66
6	Effect of Trichoderma isolates collected on the	
	survival plants of Faba Bean (cv. local), Bean	
	(cv. Pulsta) and Peas (cv. Local) sowing in soil	
	infested with three pathogenic fungi under	
	greenhouse conditions.	67
7	Effect of Trichoderma isolates on Faba bean	
	(cv. local) plant growth promotion	71
8	Effect of <i>Trichoderma</i> isolates on Bean plant (cv.	
	pulsta) plant growth promotion	73
9	Effect of Trichoderma isolates on Peas (cv.	
	local) plant growth promotion	76

vi

No.	Title	Page
10	Effect of interaction between Trichoderma	
	isolates and pathogenic fungi on vegetative	
	growth on Faba Bean (cv.local).	80
11	Effect of interaction between Trichoderma	
	isolates and pathogenic fungi on vegetative	
	growth on Bean (cv. pulsta).	82
12	Effect of interaction between Trichoderma	
	isolates and pathogenic fungi on vegetative	
	growth on Peas (cv. local).	83
13	Screening of 6 isolates of Trichoderma isolates	
	for enzymes activities	88
14	Mean squares and heritability for some traits of	
	Trichoderma isolates	93
15	Mean squares and heritability for Trichoderma	
	antagonism in vitro with F. oxysporum, M.	
	phaseolina and R. solani.	93
16	Mean squares for Trichoderma antagonism in	
	vivo with F. oxysporum, M. phaseolina and R.	
	solani on Faba Bean, Bean and Peas.	93

LIST OF FIGURES

No.	Title	Page
1	Six Trichoderma isolates were isolation from	
	east delta regions and selected to study	61
2	Rate of liner growth of the six selected	
	Trichoderma isolates measured in mm/day for 3	
	days on PDA at 25 \pm 2 °C	63
3	Antagonistic activity of Trichoderma isolates on	
	mycelium growth of: a) Fusarium solani, b)	
	Macrophomina phaseolina c) Rhizoctonia solani	
	isolated from some legumes seeds using potato	
	dextrose	65
4	Screening of 6 isolates of Trichoderma isolates	
	for Chitinase activity	88
5	Screening of 6 isolates of Trichoderma isolates	
	for B,1-3Gluconase activity	89
6	Screening of 6 isolates of Trichoderma isolates	
	for Peroxidase activity	89
7	Screening of 6 isolates of Trichoderma isolates	
	for B,1-3Gluconase activity	90
8	Screening of 6 isolates of Trichoderma isolates	
	for Catalase activity	90
9	Maximum Likelihood analysis tree based on	
	ACTIN gene region of 19 Trichoderma species	
	using Maximum Composite Likelihood (MCL)	
	approach. The bootstrap support values are	
	given at the nodes. The tree was rooted to	
	Colletotrichum fructicola (CBS 197.34).	98

•		٠
VI	1	1

No.	Title	Page
10	Maximum Likelihood analysis tree based on	
	TEF1 gene region of 15 Trichoderma species	
	using Maximum Composite Likelihood (MCL)	
	approach. The bootstrap support values are	
	given at the nodes. The tree was rooted to	
	Fusraium phyllophillum (CBS 216.76).	103

LIST OF ABBREVIATIONS

%	Per Cent
°C	Degree Celsius
μl	Microlitre
ADW	Autoclaved Distilled Water
AFLP	Amplified Fragment Length Polymorp
Approx.	Approximately
BCA	Biocontrol Agents
Вр	Base Pair
CWDEs	Cell Wall Degrading Enzymes
DNA	Deoxyribonucleic acid
dNTPs	Deoxynucleotide Triphosphates
EDTA	Ethylenediamine Tetra Acetic Acid
et al.	And Others
G	Gram
H ₂ O	Water
HC1	Hydrochloric Acid
HCN	Hydrogen Cyanide
IAA	Indole Acetic Acid
KC1	Potassium Chloride
М	Molar
MCL	Maximum Composite Likelihood
mg	Milligram
MgCl ₂	Magnesium Chloride
ml	Milliliter
mM	Milli Molar

NaCl	Sodium Chloride
Ng	Nanogram
Р	Phosphate
PAGE	Polyacrylamide Gel Electrophoresis
PCR	Polymerase Chain Reaction
PDA	Potato Dextrose Agar
PDB	Potato Dextrose Broth
RFLP	Restriction Fragment Length Polymorphism
SDS	Sodium Dodecyl Sulphate
TAE	Tris Acetic Acid EDTA Buffer
TE	Tris EDTA Buffer
TEF-1	Transcription enhancer factor-1
TSM	Trichoderma Selective Media
U	Units

ABSTRACT

Twenty-three isolates of Trichoderma species were isolated from 63 soil samples collected from different locations of the East Delta Region in Egypt. Bean was the most infection with pathogenic fungi followed by Faba Bean and Peas. Trichoderma isolates caused a remarkable reduction linear growth of three pathogenic fungi. Trichoderma isolates were found to be an effective biological control agent for three legumes crops from infection with pathogenic fungi. Trichoderma isolate G3 IQ2 recorded highly activity of as well as, isolate G5 PP1 recorded highly activity of β,1-3 Gluconase. Isolates G3 IQ2 and G4 IF2 recorded highly activity of Peroxidase While, isolate G6 SoR1showed highly activity of Polyphenoloxidase, isolate G3 IQ2 recorded highly activity of Catalase. The heritability estimates in broad sense were 90, 97, 98, 81, 71 and 98 for Chitinase, B,1-3Gluconase, Peroxdase, growth rate. Polyphenolox and Catalase, respectively. Which indicate that large additive effects are important in the determination of genetic behavior for these traits. Phylogenetic analysis of Trichoderma isolates ACTIN data set showed that, isolates obtained in this study were accommodated in 5 distinct clades, of which the first clade contained isolate (G4 IF2) grouped with Trichoderma asperellum (GJS 06-294). Whereas, the isolate (G6 SoR1) clustered with T. viride (Gr 22). The third isolate (G1 SA1) grouped with the two isolates (GJS 96-117 and CBS 979.70) of T. koningii. One isolate (G5 PP1) was identified as T. hamatum that accommodated with isolate (DAOM 167057). While, isolate (G2 NA) grouped with the *T. harzianum* isolate

(GJS 00-18). Phylogenetic analysis of *Trichoderma* isolates TEF1 data set showed that, the isolate (G2 NA) grouped with the *T. harzianum* isolates (CBS 226.95 and DAOM 222136). While, the isolate (G5 PP1) grouped with the two isolates (ER022 and ER033) of *T. hamatum*. The isolate (G3 IQ2) was accommodated with the LU809 isolate of *T. album*. The isolate (G6 SoR1) clustered with *T. viride* (CBS 586.95). The isolate (G1 SA1) grouped with the two isolates (GJS 89-122 and CBS 457.96) of *T. koningii*. The isolate (G4 IF2) grouped with *Trichoderma asperellum* (CHF 78). Our study suggested that, genetically development of *Trichoderma* isolates to plant growth promotion behind development to antagonism is very important to obtain super *Trichoderma* isolate.