LIST OF CONTENTS

1	INTRO	DUCI	ION	1
2	REVIE	W OF	LITERATURE	4
	2.1	Advar	ntages and characteristics attributed with Screenhouse utilization	4
	2.2	The ef	fect of screenhouse on Banana microclimate of banana plantation	8
	2.3	The ef	fect of screenhouse color and water treatments on Grand Nain banana	12
		2.3.1	Vegetative growth	12
		2.3.2	Yield and fruit quality	13
		2.3.3	Water use efficiency	14
	2.4	Somac	clonal variation in micropropagated banana plants	21
	2.5	Chara	cterization of Banana somaclonal variants by Molecular markers	25
3	MATE	RIALS	SAND METHODS	30
	3.1	Screen	house construction	30
	3.2	Const	truction of support system	32
	3.3		cation of three different levels of drip irrigation inside the screenhouses	32
	3.4		toring the types of somaclonal variation in tissue cultured banana plants s molecular characterization	36
		3.4.1	Off-types Morphological identification	36
		3.4.2	Off-types molecular characterization	36
	3.5	Statis	tical analysis	41
4	RESUI	LTS AN	ND DISCUSSION	42
	4.1		ffect of different colored screenhouse on microclimate parameters as ared to open field	42 42
		4.1.2	Maximum temperatures	45
		4.1.3	Relative humidity	48
		4.1.4	Light intensity	51

	4.1.5	Wind speed	54
4.2		effect of screenhouse colors and irrigation regime on vegetative h of banana plant cv. Grand Nain	57
	4.2.1	Pseudostem height (cm)	57
	4.2.2	Pseudostem circumference (cm)	58
	4.2.3	leaf length (cm)	59
	4.2.4	leaf width (cm)	60
	4.2.5	leaf area (m ²)	61
	4.2.6	Number of leaves /plant	62
	4.2.7	Assimilation area (m ² /plant)	63
4.3		ffect of screenhouse colors and irrigation regime on Flowering of banana	65
	4.3.1	Time to flowering	66
	4.3.2	Time to harvesting	68
	4.3.3	Cropping cycle	
4.4	The e	effect of screenhouse color and irrigation regime on productivity of na plant cv. Grand Nain	70 71
	4.4.1	Bunch weight (Kg)	71
	4.4.2	Bunch height (cm)	71
	4.4.3	Bunch girth (cm)	73
	4.4.4	Number of hands per Bunch	75
	4.4.5	Number of fingers per hand	75
	4.4.6	Number of fingers / bunch	76
4.5	Wate	r use efficiency (kg/m ³)	78
4.6	Moni	toring the types of somaclonal variation in tissue cultured banana plants	81
4.7	Offty	pes vegetative evaluation	91

4.8	6 Offtype	es reproductive evaluation	93		
4.9	Molecu	llar Characterization	95		
	4.9.1	Molecular polymorphism	96		
	4.9.2	SRAP pattern	96		
	4.9.3	TRAP-PCR pattern	103		
	4.9.4	Molecular Cluster analysis	109		
	4.9.5	Molecular Principle coordinates analysis (PCOORDA)	113		
5 SU	MMARY		118		
	Conclu	sion	140		
6 LI	TERATURI	E CITED	142		
7 ARABIC SUMMARY					

LIST OF FIGURES

Figure 1	:	The minimum temperature average inside the screenhouses and open field during first season (mother plant)	43
Figure 2	:	The minimum temperature average inside the screenhouse and open field during second season (first ratoon).	44
Figure 3	:	The maximum temperature average inside the screenhouse and open field during first season (mother plant).	46
Figure 4	:	The maximum temperature average inside the screenhouse and open field during second season (first ratoon).	47
Figure 5	:	The relative humidity average inside the screenhouses and open field during first season (mother plant).	49
Figure 6	:	The relative humidity average inside the screenhouses and open field during second season (first ratoon).	50
Figure 7	:	Light intensity average inside the screenhouses and open field during first season (mother plant).	52
Figure 8	:	Light intensity average inside the screenhouses and open field during second season (first ratoon).	53
Figure 9	:	The wind speed average inside the screenhouses and open field during first season (mother plant).	55
Figure 10	:	The wind speed average inside the screenhouses and open field during second season (first ratoon).	56
Figure 11	:	Category 2 plant stature a-normal plant b-Extra Dwarf c-Dwarf d-Giant e-Weak.	83
Figure 12	:	Category 3 pseudostem color a-normal b-pale green c-reddish d-black	84
Figure 13	:	Category 4 peduncle length a-normal b-short c-long d-very long	85
Figure 14	:	Category 5 leaf orientation a-normal b-droopy c-erected	86
Figure 15	:	Category 6 leaf shape a-normal b-Masada c-deformed d-narrow e-wavy margins	87

Figure 16	:	Category 7 leaf color a-variegated b-reddish c-bright spot	88
Figure 17	:	Category 8 bunching a-normal b-failure c-double from stem d- double from peduncle e-empty peduncle.	89
Figure 18	:	Category 9 bunch orientation a-normal b-vertical c-horizontal d-angled	90
Figure 19	:	SRAP pattern of Grand Nain banana cultivar and its 26 somaclones separated on 1.5% agarose gel electrophoresis (Me1)	98
Figure 20	:	SRAP pattern of Grand Nain banana cultivar and its 26 somaclones separated on 1.5% agarose gel electrophoresis. (Me2)	99
Figure 21	:	SRAP pattern of Grand Nain banana cultivar and its 26 somaclones separated on 1.5% agarose gel electrophoresis (Me3)	100
Figure 22	:	TRAP pattern of Grand Nain banana cultivar and its 26 somaclones separated on 1.5% agarose gel electrophoresis. (Musa1)	104
Figure 23	:	TRAP pattern of Grand Nain banana cultivar and its 26 somaclones separated on 1.5% agarose gel electrophoresis. (Musa2)	105
Figure 24	:	Cluster analysis of banana cv. Grand Nain and its twenty six somaclones generated from SRAP data using Jaccard similarity coefficient and UPGMA clustering method	110
Figure 25	:	Cluster analysis of banana cv. Grand Nain and its twenty six somaclones generated from TRAP data using Jaccard similarity coefficient and UPGMA clustering method	112
Figure 26	:	PCOORDA for banana cv. Grand Nain and its somaclonal variants based on SRAP analysis	114
Figure 27	:	PCOORDA for banana cv. Grand Nain and its somaclonal variants based on TRAP analysis.	116

LIST OF TABLES

Table 1	:	Experiment soil chemical and physical analysis.	31
Table 2	:	Experiment water chemical analysis.	31
Table 3	:	Scheme of water frequency by drip irrigation system	33
Table 4	:	SRAP and TRAP primers and their sequences used in molecular analysis.	41
Table 5	:	The minimum temperatures (C ^o) means recorded under open field, black, white and green screenhouse conditions during first season (2015).	43
Table 6	:	The minimum temperatures (C ^o) means under open field, black, white and green screenhouse conditions during second season (2016).	44
Table 7	:	The maximum temperatures (C°) means under open field, black, white and green screenhouse conditions during first season (2015).	46
Table 8	:	The maximum temperatures (C ^o) means under open field, black, white and green screenhouse conditions during second season (2016).	47
Table 9	:	The relative humidity % means under open field, black, white and green screenhouse conditions during first season (2015).	49
Table 10	:	The relative humidity % means under open field, black, white and green screenhouse conditions during second season (2016).	50
Table 11	:	Light intensity means (lux) *1000 under open field, black, white and green screenhouse conditions during first season (2015).	52
Table 12	:	Light intensity means (lux) *1000 under open field, black, white and green screenhouse conditions during second season (2016).	53
Table 13	:	wind speed (m/s) under open field, black, white and green screenhouse conditions during first season (2015)	55
Table 14	:	The wind speed (m/s) under open field, black, white and green screenhouse conditions during second season (2016)	56

Table 15	:	The effect of screenhouse colors and irrigation regime on Pseudostem height (cm) of banana plant cv. Grand Nain	57
Table 16	:	The effect of screenhouse colors and irrigation regime on Pseudostem circumference (cm) of banana plant cv. Grand Nain	58
Table 17	:	The effect of screenhouse colors and irrigation regime on leaf length (cm) of banana cv. Grand Nain	59
Table 18	:	The effect of screenhouse colors and irrigation regime on leaf width (cm) banana cv. Grand Nain	60
Table 19	:	The effect of screenhouse colors and irrigation regime on leaf area (m2) banana cv. Grand Nain	61
Table 20	:	The effect of screenhouse colors and irrigation regime on number of leaves /plant banana cv. Grand Nain (recorded at bunch shooting stage).	62
Table 21	:	The effect of screenhouse colors and irrigation regime on assimilation area (m2 /plant) banana cv. Grand Nain (recorded at bunch shooting stage)	63
Table 22	:	The effect of screenhouse colors and irrigation regime on flowering percentage of banana cv. Grand Nain	67
Table 23	:	The effect of screenhouse colors and irrigation regime on time to flowering of banana cv. Grand Nain	67
Table 24	:	The effect of screenhouse treatments and irrigation regime on time to harvesting of banana cv. Grand Nain	69
Table 25	:	The effect of screenhouse color and irrigation water treatments on cropping cycle of banana cv. Grand Nain	69
Table 26	:	The effect of screenhouse color and irrigation water treatments on Bunch weight (Kg) of banana cv. Grand Nain	72
Table 27	:	The effect of screenhouse color and irrigation water treatments on Bunch height (cm) of banana cv. Grand Nain	72
Table 28	:	The effect of screenhouse color and irrigation water treatments on Bunch girth measured at first hand (cm) of banana cv. Grand Nain.	74

Table 29	:	The effect of screenhouse color and irrigation water treatments on number of hands per Bunch of banana cv. Grand Nain.	74
Table 30	:	The effect of screenhouse color and irrigation water treatments on number of fingers per hand of banana cv. Grand Nain.	77
Table 31	:	The effect of screenhouse color and irrigation water treatments on number of fingers / bunch of banana cv. Grand Nain	77
Table 32	:	The effect of screenhouse treatments and irrigation water regime on water use efficiency (WUE) of banana cv. Grand Nain.	79
Table 33	:	Offtypes detected and its categories of banana cv. Grand Nain	82
Table 34	:	Off types Vegetative parameters recorded	92
Table 35	:	Off types reproductive parameters recorded.	94
Table 36	:	Categories and DNA concentrations $(ng/\mu l)$ of the 'Grand Nain 'banana cultivar and its detected somaclones	95
Table 37	:	Polymorphism revealed by SRAP and TRAP primers used in molecular analysis	97
Table 38	:	Amplified DNA fragments as revealed by electrophoresed SRAP-PCR products	101
Table 39	:	Amplified DNA fragments as revealed by electrophoresed SRAP-PCR products.	102
Table 40	:	Similarity coefficient correlation among banana cv. Grand Nain and its somaclones depends upon data generated by SRAP marker.	103
Table 41	:	Amplified DNA fragments as revealed by electrophoresed TRAP-PCR products.	106
Table 42	:	Amplified DNA fragments as revealed by electrophoresed TRAP-PCR products.	107
Table 43	:	Similarity coefficient correlation among banana cv. Grand Nain and its somaclones depends upon data generated by TRAP marker.	108

ABSTRACT

Screenhouses utilization is rapidly expanding now days, in this investigation the effect of planting banana plants c.v. Grand Naine under screenhouses conditions and different irrigation water quantities on vegetative growth, subsequently productivity and Water Use Efficiency (WUE) were examined, some microclimate elements such as canopy temperature, humidity, wind speed and light intensity were recorded, water saving by using three different levels of irrigation was estimated, vegetative growth parameters such pseudostem height, as pseudostem circumference, leaf length, width and assimilation area were recorded. Also flowering data such as flowering percentage, time to flowering and time to harvest were recorded. Productivity parameters such as bunch weight, length, circumference, number of hands, number of fingers per hand and number of fingers per bunch were recorded. Since we use micropropagated banana plants, somaclonal variation which directly affect the productivity was detected and identified at the morphological and molecular levels by using new molecular markers such as Sequence Related Amplified polymorphism (SRAP) and Target Region Amplified polymorphism (TRAP) to show the differences among the normal plant and its variants.

The results revealed about 40-50% reduction in wind speed, about 30% reduction in crop water use inside the screenhouses, as compared to open field which may due to the reduction of evapotranspiration and soil evaporation. Planting banana plant inside screenhouses decrease canopy maximum temperature and increase the minimum temperature. Planting banana plant cv. Grand Naine under white screenhouse conditions with 30% reduction in irrigation water gave the highest value of WUE (3.43 & 5.88 Kg/m³) in first and second season respectively. The plant screening resulted 26 somaclonal variants grouped into 8 categories, the PCR products gave 2304 amplified fragments.1463 fragments resulted from SRAP marker and 841 fragments resulted from TRAP marker. According to SRAP Jaccard similarity analysis 'double bunching from peduncle' was more related to the normal plant. According to SRAP principal coordinate analysis most of the variants were aggregated in three clusters whereas 'pale green, black, wavy margins, double bunch from stem and vertical upward bunch' was segregated apart from the other variants. According to TRAP Jaccard similarity analysis empty peduncle' was more related to the normal plant. According to TRAP principal coordinate analysis most of the variants were aggregated in three clusters whereas 'pale green, black and vertical upward bunch' was segregated apart from the other variants which may reflect the genetic difference among normal plant and its somaclonal variants. Finally it is utmost importance to move banana orchards into screenhouses in order to minimize crop water use, pesticide usage and enhance the fruit quality.

Key words: Microclimate, banana, Grand Nain, irrigation, screenhouse, somaclonal variation, SRAP, TRAP.