CONTENT

Content		Pages
1	Introduction	1
2	Review of literature 2.1. Omphalitis in chicks 2.2. E. coli in chicks 2.3. S. aureus in chicks 2.4. salmonella in chicks 2.5. Pseudomonas in chicks 2.6. Polymerase Chain Reaction for detection of disinfection resistance gene	6 6 16 24 37 52 61
3	Material and MethodsMaterials 3.1.3.1.1. chicks3.1.2. Media used3.A.1.2. Media used for <i>E. coli</i> isolation3.A.1.2.1. Media used for bacteriological examination of <i>E. coli</i> 3.A.1.2.2. Media used for biochemical tests3.A.1.2.3. Media used for antibiotic sensitivity test3.A.1.3. stains3.A.1.4. Reagents and solutions3.A.1.5. Diagnostic <i>E. coli</i> antisera3.A.1.6. Antibiotic sensitivity discs3.B.1.2. Media used for bacteriological examination of salmonella3.B.1.2.1. Media used for bacteriological examination of salmonella3.B.1.2.1. Media used for bacteriological examination of salmonella3.B.1.2.1. Media used for antibiotic sensitivity test3.B.1.2.1. Media used for antibiotic sensitivity test3.B.1.2.3. Media used for antibiotic sensitivity test3.B.1.2.4. Reagents and solutions3.B.1.2.5. Diagnostic salmonella antisera3.B.1.3. stains3.B.1.4. Reagents and solutions3.B.1.5. Diagnostic salmonella antisera3.B.1.6. Antibiotic sensitivity discs3.C.1.2. Media used for <i>S. aureus</i> isolation3.C.1.2.1. Media used for bacteriological examination of <i>S. aureus</i> 3.C.1.2.2. Media used for biochemical tests3.C.1.2.3. Media used for antibiotic sensitivity test	$\begin{array}{c} 65\\ 65\\ 65\\ 66\\ 67\\ 68\\ 68\\ 68\\ 69\\ 70\\ 70\\ 70\\ 70\\ 71\\ 72\\ 72\\ 73\\ 73\\ 73\\ 74\\ 74\\ 74\\ 75\\ 75\end{array}$

	3.C.1.3. stains	75
	3.C.1.4. Antibiotic sensitivity discs	75
	3.D.1.2. Media used for <i>P. aeruginosa</i> isolation	76
	3.D.1.2.1 Media used for bacteriological examination of <i>P. aeruginosa</i>	76
	3.D.1.2.2. Media used for biochemical tests	77
	3.D.1.2.3. Media used for antibiotic sensitivity test	77
	3.D.1.3. stains	78
	3.D.1.4. Reagents and solutions	78
	3.D.1.5. Antibiotic sensitivity discs	78
	3.1.A. Reagents and chemicals for Polymerase Chain Reaction	79
	3.1.A.1. Materials used for nucleic acid extraction	79
	3.1.B. Materials and equipments used for conventional PCR	79
	3.1.B.1. PCR master mix for conventional PCR	79
	3.1.B.2. Storage condition	80
	3.1.B.3. Oligo nucleotide primers	80
	3.1.B.4. Materials used for agarose gel electrophoresis	81
	3.1.C. Equipments and apparatuses	83
	3.1.C.1. Equipments used for <i>E. coli</i> isolation and identification	83
	3.1.C.2. Equipments and instruments used for DNA extraction	84
	3.1.C.3. Equipments and apparatuses used in conventional PCR	84
	3.2. Methods	85
	3.A.2.1. Detection of <i>E. coli</i> by conventional method	85
	3.A.2.2. Identification of suspected <i>E. coli</i> colonies	85
	3.A.2.3. Sensitivity of <i>E. coli</i> to antimicrobial agents	90
	3.B.2.1. Detection of salmonella by conventional method	91
	3.B.2.2. Identification of suspected salmonella colonies	94
	3.B.2.3. Serological typing of salmonella	98
	3.B.2.4. Sensitivity of salmonella to antimicrobial agents	99
	3.C.2.1. Detection of <i>S. aureus</i> by conventional method	101
	3.C.2.2. Identification of suspected <i>S. aureus</i> colonies	102
	3.C.2.3. Sensitivity of <i>S. aureus</i> to antimicrobial agents	104
	3.D.2.1. Detection of <i>P. aeruginosa</i> by conventional method	106
	3.D.2.2. Identification of suspected <i>P. aeruginosa</i> colonies	107
	3.D.2.3. Sensitivity of <i>P. aeruginosa</i> to antimicrobial agents	110
	3.2.A. Detection of virulence and resistance genes using PCR	113
	3.2.A.1. DNA extraction and purification	113
	3.2.A.2. Amplification and cycling for conventional PCR	114
4	Results	117
-		117
	4.1. Incidence of bacteria causing omphalitis 4.1.1. Incidence of isolated bacteria in chicks fron one to seven days	117
	4.1.2. Incidence of mixed infection	117
	4.A.1. Incidence of <i>E. coli</i> infection in chicks	118

	4.A.2. Incidence of <i>E. coli</i> in different chick organs	118
	4.A.3. E. coli serogroups recovered from examined chicks	119
	4.A.4.Sensitivity of <i>E. coli</i> serotypes to different antibiotic agents	121
	4.A.5. PCR for detection of virulence gene of <i>E. coli</i>	124
	4.A.5.1. Detection of eaeA gene of <i>E. coli</i>	125
	4.A.6. Detection of resistant gene of <i>E. coli</i>	125
	4.A.6.1. Detection of $qacE\Delta1$ gene of <i>E. coli</i>	125
	4.B.1. Incidence of salmonella infection in chicks	126
	4.B.2. Incidence of salmonella in different chick organs	127
	4.B.3. Salmonella serogroups recovered from examined chicks	128
	4.B.4. Sensitivity of salmonella serotypes to different antibiotic agents	129
	4.B.5. PCR for detection of virulence gene of salmonella	131
	4.B.5.1. Detection of invA gene of salmonella	131
	4.B.6.Detection of <i>qac</i> E∆1 gene of salmonella	132
	4.C.1. Incidence of <i>S. aureus</i> infection in chicks	132
	4.C.2. Incidence of <i>S. aureus</i> in different chick organs	133
	4.C.3. Sensitivity of <i>S. aureus</i> to different antibiotic agents	134
	4.C.4. PCR for detection of resistant gene of <i>S. aureus</i>	137
	4.C.4.1. Detection of mecA gene of <i>S. aureus</i>	137
	4.C.4.2. Detection of qac E Δ 1 gene of <i>S. aureus</i>	138
	4.D.1. Incidence of <i>P. aeruginosa</i> infection in chicks	138
	4.D.2. Incidence of <i>P. aeruginosa</i> in different chick organs	139
	4.D.3. Sensitivity of <i>P. aeruginosa</i> serotypes to different antibiotic agents	140
	4.D.4. PCR for detection of genes of <i>P. aeruginosa</i>	141
	4.D.4.1. Detection of coomon gene of <i>P. aeruginosa</i>	142
	4.D.4.2. Detection of <i>qac</i> E∆1 gene of <i>P. aeruginosa</i>	142
5	Discussion	
		143
6	Conclusion	
		166
7	Summary	
		167
8	References	
		170
9	Arabic summary	
		Ш

List of tables

No.	Title	pages
1	Oligonucleotide primers for virulence and resistant genes.	81
2	Reference strains.	83
3	Interpretations of changes of different biochemical media.	89
4	Biochemical identification of Salmonella.	97
5	Interpretation of the diameter of inhibition zone of antimicrobial agent used for salmonella	101
6	Interpretation of the diameter of inhibition zone of antimicrobial agent used for <i>S. aureus</i> .	106
7	The main characteristics and biochemical reactions of <i>P.aeruginosa</i> .	110
8	Interpretation of the diameter of inhibition zone of antimicrobial agent used for <i>P.aeruginosa</i> .	112
9	Takara Emerald Amp GT PCR master mix.	114
10	The cycling protocol of PCR for amplification of virulence and resistant genes.	115
11	Incidence of bacteria in chicks from one day to seven days.	117
12	Incidence of mixed infection.	117
13	Rate of recovery of <i>Escherichia coli</i> from internal organs.	119
14	<i>E.coli</i> serogroupes recovered from bacteriologically examined chicks.	120

15	Sensitivity of <i>E. coli</i> serotypes to antimicrobial agents.	121
16	Rate of recovery of salmonella from internal organs.	127
17	Salmonella serogroupes recovered from bacteriologically examined organs.	128
18	Serology of isolated Salmonella serotypes from chicks.	128
19	Sensitivity of Salmonella serotypes to antimicrobial agents.	129
20	Rate of recovery of <i>S. aureus</i> from internal organs susceptibility tests.	134
21	Sensitivity of <i>Staph aureus</i> to antimicrobial agents.	135
22	Rate of recovery of <i>P.aeruginosa</i> from internal organs.	139
23	Sensitivity of <i>P.aeruginosa</i> to antimicrobial agents	141

List of figures

No.	Title	Pages
1	Salmonella isolation procedure.	93
2	Amplification of <i>eae</i> A gene of <i>Escherichia coli</i> strains.	125
3	Amplification of <i>qacE</i> ∆1 gene of <i>Escherichia coli</i> strains.	126
4 (A,B)	Amplification of <i>inv</i> A <i>and qac</i> E∆1 genes of Salmonella.	132
5	Amplification of <i>mec</i> A gene of <i>S. aureus</i> .	137
6	Amplification of $qacE\Delta1$ gene of <i>S. aureus</i> .	138
7 (A,B)	Amplification of 16SrDNA and qacE∆1 genes of <i>P.aeruginosa</i> .	142

List of abbreviations

A/E	Attaching and effacing adhesion.
APEC	Avian pathogenic Escherichia coli
api 20	Analytical profile index 20
Вр	Base pair
BKC	Benzalkonium chloride
BPW	Buffered Peptone Water
Cat.	Catalogue
CLDT	Cytolethal Distending Toxin.
CLSI	Clinical and Laboratory Standards Institute
DNA	Deoxy ribonucleic acid
D.W.	Distilled Water
DDW	Deionized Distilled Water
eae	Gene encodes intimin which responsible for attaching and effacing
EAggEC	Enteroaggregative Escherichia coli.
EDTA	Ethylene Diamine Tetraacetic Acid

EHEC	EnteroHemorrhagic Escherichia coli
EIEC	Enteroinvasive Escherichia coli
EMB	Eosin Methylene Blue agar
EPEC	Enteropathogenic Escherichia coli
ETEC	Enterotoxigenic Escherichia coli
Gm	Gram
HE agar	Hiktone enteric agar
H ₂ S	Hydrogen sulphide
invA	Salmonella Invasive Gene
LI agar	Lysine Iron Agar
Min	Minutes
hð	Micro gram
MI	Milliliters
μΙ	Micro litter
Mm	Millimeter
MKTTn	Muller- Kauffmann Tetrathionate novobiocin

MR	Methyl red
NCCLS	National Committee for Clinical Laboratory Standards
PCR	Polymerase chain reaction
QAC	Quaternary ammonium compounds
QacE∆1	Attenuated variant Qac gene
Rpm	Revolution per minute
RVs	Rappaport – Vassiliadis
SPIs	Salmonella pathogenicity island gene
SPv	Salmonella plasmid virulence gene
SS agar	Salmonella Shigella agar
Subsp	Subspecies
ТВЕ	Tris borate EDTA
TSA	Tryptic Soya agar
TSI agar	Triple Sugar Iron agar
Π	Tetrathionate
VP	Voges Proskauer

WHO	World health organization
XLD	Xylose Lysine Deoxycholate agar
YSI	Yolk sac infection

7. SUMMARY:

In this study, 200 diseased Saso chicks with omphalitis were examined (1400 samples) for the isolation of different bacterial strains from different organs (liver, ceacum, spleen, heart, lung, yolk sac and cloacal swab). Out of 200 chicks (1400 samples), 64 cases were positive with an incidence of 32% and bacteriological examination revealed that 142 and 58 were harbored bacterial strains as single and mixed infections with an incidence of 71% and 29% respectively.

Out of 200 chicks (1400 samples) examined, *E. coli* 50 (25%) was the most predominant isolate followed by *S. aureus* 25 (12.5%) followed by salmonella 24 (12%) and finally *P. aeruginosa* 5 (2.5%).

Out of 200 chicks (1400 samples), the incidence of yolk sac infection was observed in 64 (32%) chicks. Maximum percentage (51.4%) of yolk sac infection was observed in chicks of 5 days old followed by age of 3 days (37.5%), 4 days (30%), 2 days & 6 days (26.67%), 1 day (20%) and 7 days (15%).

The obtained results of this study revealed that the most *Escherichia coli* isolates obtained from liver of the examined chicks followed by yolk, spleen, caecum, heart, lung and cloacal swab 14%, 11.5%, 11%, 10%, 10%, 9% and 8% respectively.

In this study, 50 out of 200 *E. coli* isolates recovered from chicks could be serogrouped in 19 O groups with the most predominant serotype was *E. coli* O_{91} 20 % (10 out of 50 isolates).

Salmonella incidence was 12% (24 out of 200 chicks) and the most *Salmonella* species were obtained from caecum of the examined chicks followed by liver, spleen, lung , cloacal swab , yolk and heart , 12%, 11.5%, 11.5%, 8.5%, 8.5%, 8% and 6% respectively. Salmonella isolates were serotyped using poly and monovalent "O" and "H" antisera. The serogrouping revealed that the most predominant serotypes were *S*. *Typhimurium* and *S*. *Enteritidis* 20.83% (5strains out of 24 for each).

S. aureus was recovered in 24 samples with an incidence rate 12.5 % (25 out of 200). The internal organs of each chicken was examined bacteriologically to determine the incidence of *S. aureus* in each organ, where *S. aureus* was isolated as the following 6.5% (13 out of 200) from liver; 6% (12out of 200) from caecum; 4% (8 out of 200) from spleen; 4.5% (9 out of 200) from heart; 4% (8 out of 200) from lung; 2.5% (5 out of 200) from yolk and 4% (8 out of 200) cloacal swab.

P. aeruginosa was isolated as the following 1.5% (3 out of 200) from liver; 1.5% (3 out of 200) from caecum; 0.5% (1 out of 200) from spleen; zero from heart; 0.5% (1 out of 200) from lung; 2% (4 out of 200) from yolk and 1% (2 out of 200) cloacal swab.

E. coli O groups was found to be 93.02% resistant to amoxicillin while was found to be highly sensitive for gentamycin with 88.37%. Also

Salmonella was found to be 83.33% resistant to amoxicillin while was found to be highly sensitive for gentamycin with 95.8%. While *S. aureus* was found to be 96% resistant to erythromycin while was found to be highly sensitive for gentamycin with 100%. And finally *P. aeruginosa* was found to be 100% resistant to tetracycline while it was highly sensitive for gentamycin with 80%.

In this study, the incidence rate (15.79%) of *eae*A gene of *E.coli* detection was recorded, was detected by PCR (3 out of the 19 tested isolates). Incidence rate (72.22%) of *mec*A gene of *S. aureus* detection was recorded. It was detected by PCR (13 out of the 18 tested isolates). While the incidence rate (85.71%) of *inv*A gene of Salmonella detection was recorded, as it was detected by PCR (6 out of the 7 tested isolates).

The $qac E\Delta 1$ gene was reported in the present study as following: -In *E. coli* (63.16%), was detected by PCR (12 out of the 19 tested isolates).

- In salmonella (57.14%), was detected by PCR (4 out of the 7 tested isolates).

- In *S. aureus* (44.44%), was detected by PCR (8 out of the 18 tested isolates).

- In *P. aeruginosa* (100%), was detected by PCR (5 out of the 5 tested isolates).

Finally Chicks with omphalitis harbored many different pathogens which considered source of infection during first days of life.