LIST OF ABBREVIATIONS	i
LIST OF TABLES	ii
LIST OF FIGURES	vii
I. INTRODUCTION	1
AIM OF WORK	4
II. REVIEW OF LITERATURE	5
PART I	
2.1.1- Keratinolytic and keratinophilic fungi	5
2.1.2- Keratinase enzyme	7
2.1.2.1- General biochemical characteristics	8
2.1.2.2- Hydrolysis of native proteins	9
2.1.2.3- Production of keratinases	10
2.1.2.4- Factors affecting on keratinase production	11
2.1.2.5- Applications of microbial keratinases	12
2.1.3- Keratin	14
2.1.3.1- Structure of keratin	16
2.1.4- Keratin and fish	18
2.1.4.1- Teeth	18
2.1.4.2- Hagfish Slime	18
2.1.5- Bio-control of keratinolytic fungi	19
2.1.5.1- Nanotechnology technique	19
PART II	
2.2.1- Drainage and wastewaters	23
2.2.2- Water importance for aquaculture	23

2.2.3- Water pollution	24
2.2.4- Physical, chemical and biological parameters	25
affecting aquaculture water	
Abiotic factors	25
2.2.4.1- Physical parameters of water	25
1- Temperature	25
2- Turbidity	25
3- Dissolved oxygen	26
4- Concentration of hydrogen ion (pH)	27
5- Salinity	27
6- Total dissolved solids	28
2.2.4.2- Chemical parameters of water	28
1- Nitrogen	28
- Ammonia	29
- Nitrite	29
- Nitrate	30
2- Total alkalinity	30
3- Total hardness	31
4- Phosphorus	32
- Total phosphorus	32
- Dissolved phosphorus	32
2.2.4.3- Heavy metals	33
1- Iron	35
2- Zinc	37
3- Copper	39
4- Cadmium	40
5- Lead	43
Biotic factors	45

2.2.4.4- Phytoplankton	45
2.2.4.5-Zooplankton	47
III. MATERIAL AND METHODS	
3.1- Location of the study sites	
3.2- Sampling	50
3.2.1- Water samples	50
3.2.2- Soil samples	50
3.2.3- Fish samples	51
3.3- Mycological analysis	51
3.3.1- Qualitative and quantitative determination of fungi	51
1- Isolation	51
2- Purification	53
3- Identification of fungal species	
4- Maintenance of the stock fungal cultures	54
5- Inoculum preparation	54
6- The media used	54
- Solid mineral medium (g/l)	54
- Mineral broth medium (g/l)	54
- Czapek's Dox agar medium (g/l)	55
- Czapek's yeast autolysate (CYA) agar for identification of	55
Aspergillus species (g/l)	
- Blakeslee malt extract autolysate (MEA) agar for identification	55
of Aspergillus species, Mucor sp. Humicola sp. and	
<i>Trichoderma</i> sp. (g/l)	
- Potato sucrose agar (PSA) for identification of Fusarium sp.	55
(g/l)	
3.3.2- Determination of keratinolytic activity	56

3.3.3- Pretreatment of the feathers		
3.3.4- Screening of keratinolytic activity on agar plates		
3.3.5- Effect of culture conditions and nutritional	58	
requirements on fungal growth and keratinase		
production of highly keratinolytic fungi		
(Penicillium commune)		
3.3.6- Mycelial dry weight	58	
3.3.7- Keratinase activity assay	59	
3.3.8- Enzyme Unit	59	
3.3.9- Estimation of protein	60	
3.3.10 - Purification of keratinase enzyme		
- culturing	60	
- Sephadex G-100 fractionation		
3.3.11- Polyacrylamide gel electrophoresis		
3.3.12- Nanotechnology technique		
- Synthesis of ZnO Nanoparticles	61	
- Antimicrobial Activity	62	
3.4- Analytical procedure	63	
3.4.1- Water analysis	63	
3.4.1.1- Physical analysis	63	
- Temperature, Dissolved Oxygen (DO)	63	
- Water transparency (cm)	64	
- Hydrogen ion concentration (pH)	64	
- Salinity and Electric Conductivity and Total Dissolved Solids		
3.4.1.2- Chemical analysis		
- Ammonia (NH3)	64	

- Nitrite (NO ₂)	64	
- Nitrate (NO ₃)	65	
- Total alkalinity and total hardness (mg/l)		
- Total phosphorus (TP) and ortho phosphorus (OP) (mg/l)	65	
3.4.1.3- Heavy metals in water	65	
3.4.1.4- Chlorophyll "a" Chlorophyll "a"	65	
3.4.1.5- Biological examinations	66	
- Phytoplankton assessment	66	
- Zooplankton assessment	67	
3.5- Statistical analysis	67	
IV. RESULTS	68	
PART I		
4.1.1- Effect of different locations and different seasons on		
fungal flora community		
4.1.2- Fungi recovered in the present investigation		
4.1.3- Screening of the different fungal isolates for their		
keratinolytic activity		
4.1.4- Selection of isolate for further study	73	
4.1.5- Culture conditions affecting growth and keratinase		
enzyme production		
4.1.5.1- Effect of incubation period on growth and keratinase		
enzyme production by Penicillium commune		
4.1.5.2- Effect of pH-value on growth and keratinase enzyme		
production by Penicillium commune		
4.1.5.3- Effect of incubation temperature on growth and		
keratinase enzyme production by <i>Penicillium</i>		

commune	
4.1.5.4- Effect of different volumes of the basal medium on	82
growth and keratinase enzyme production by	
Penicillium commune	
4.1.5.5- Effect of different sizes of inocula on growth and	84
keratinase enzyme production by Penicillium	
commune	
4.1.5.6- Effect of different carbon sources on growth and	86
keratinase enzyme production by Penicillium	
commune	
4.1.5.7- Effect of different concentrations of starch as carbon	88
source on growth and keratinase enzyme	
production by Penicillium commune	
4.1.5.8- Effect of different nitrogen sources on growth and	90
keratinase enzyme production by Penicillium	
commune	
4.1.5.9- Effect of different concentrations of yeast extract as	92
nitrogen source on growth and keratinase enzyme	
production by Penicillium commune	
4.1.6- Purification of keratinase Systems Produced by	94
Penicillium commune	
4.1.6.1- Fractional precipitation of the keratinase of	95
Penicillium commune with different agents	
4.1.6.2- Concentration of extracellular keratinase of	95
Penicillium commune by dialysis	
4.1.6.3- Gel filtration on Sephadex G ₁₀₀	96

4.1.6.4- Gel electrophoresis	99
4.1.6.5- Determination of molecular weight of the pure	100
keratinase of <i>Penicillium commune</i>	
4.1.7- Nanotechnology technique	101
PART II	
4.2.1- Physical parameters of water	102
4.2.2- Chemical parameters of water	112
4.2.3- Biological assessment of water	126
4.2.4- Heavy metals in water	145
V. DISCUSSION	154
PART I	154
PART II	174
VI. SUMMARY	186
VII. REFERENCES	193
ARABIC SUMMARY	

ABBREVIATION	NAME
DO	Dissolved oxygen
EC	Electric conductivity
CLAR	Central Laboratory for Aquaculture Research
G. fish farm	Governmental fish farm
μg/g	Micro gram per gram
ND	Not detected
O. P	Ortho Phosphorus
Phyto.	Phytoplankton
Sal.	salinity
SD	Secchi Disc
Shad. Azz. fish farm	Shader Azzam fish farm
T. Alk	Total Alkalinity
TDS	Total dissolved solids
T. Hard	Total Hardness
Т. Р	Total Phosphorus
Z00.	Zooplankton

LIST OF ABBREVIATIONS

LIST OF TABLES

	PAGE
Potential applications of microbial keratinases.	13
Major keratin distribution in animals.	15
Guidelines for some heavy metals concentration	35
in aquaculture water.	
Chemical composition of feather waste used in	57
experiment.	
Effect of different locations on average	69
percentage of fungal flora community in four	
seasons.	
Effect of different seasons on average	70
percentage of fungal flora community in four	
locations.	
List of different isolated Keratinolytic fungi.	72
Keratinolytic activity as clear zone of different	74
fungal isolates grown on keratin as carbon and	
nitrogen source at 28 °C \pm 2.	
Effect of incubation period on growth and	77
keratinase enzyme production by Penicillium	
commune.	
Effect of pH-value on growth and keratinase	79
enzyme production by <i>Penicillium commune</i> .	
Effect of incubation temperature on growth and	81
keratinase enzyme production by <i>Penicillium</i>	
commune.	
Effect of different volumes of the basal medium	83
on growth and keratinase enzyme production by	
	 Potential applications of microbial keratinases. Major keratin distribution in animals. Guidelines for some heavy metals concentration in aquaculture water. Chemical composition of feather waste used in experiment. Effect of different locations on average percentage of fungal flora community in four seasons. Effect of different seasons on average percentage of fungal flora community in four locations. List of different isolated Keratinolytic fungi. Keratinolytic activity as clear zone of different fungal isolates grown on keratin as carbon and nitrogen source at 28 °C ± 2. Effect of pH-value on growth and keratinase enzyme production by <i>Penicillium commune</i>. Effect of incubation temperature on growth and keratinase enzyme production by <i>Penicillium commune</i>. Effect of incubation temperature on growth and keratinase enzyme production by <i>Penicillium commune</i>. Effect of different volumes of the basal medium on growth and keratinase enzyme production by <i>Penicillium</i>

	Penicillium commune.	
Table (13):	Effect of different sizes of inocula on growth	85
	and keratinase enzyme production by	
	Penicillium commune.	
Table (14):	Effect of different carbon sources on growth and	87
	keratinase enzyme production by Penicillium	
	commune.	
Table (15):	Effect of different concentrations of starch as	89
	carbon source on growth and keratinase enzyme	
	production by Penicillium commune.	
Table (16):	Effect of different nitrogen sources on growth	91
	and keratinase enzyme production by	
	Penicillium commune.	
Table (17):	Effect of different concentrations of yeast	93
	extract as nitrogen source on growth and	
	keratinase enzyme production by Penicillium	
	commune.	
Table (18):	Purification and overall recovery of Penicillium	97
	commune keratinase.	
Table (19):	Seasonal mean ±SE of water temperature (°C)	103
	during studying period in study locations.	
Table (20):	Seasonal mean ±SE of water Secchi disc (cm)	104
	during studying period in study locations.	
Table (21):	Seasonal mean ±SE of water dissolved oxygen	106
	(mg/L) during studying period in study	
	locations.	
Table (22):	Seasonal mean ±SE of water pH during studying	107
	period in study locations.	

Table (23):	Seasonal mean ±SE of water salinity (g/l) during	109
	studying period in study locations.	
Table (24):	Seasonal mean ±SE of water electrical	110
	conductivity (mS/cm) during studying period in	
	study locations.	
Table (25):	Seasonal mean ±SE of water TDS (mg/L)	111
	during studying period in study locations.	
Table (26):	Seasonal mean ±SE of water NH ₃ (mg/L) during	113
	studying period in study locations.	
Table (27):	Seasonal mean \pm SE of water NO ₂ (mg/L) during	114
	studying period in study locations.	
Table (28):	Seasonal mean \pm SE of water NO ₃ (mg/L) during	115
	studying period in study locations.	
Table (29):	Seasonal mean ±SE of water T. Alk (mg/L)	117
	during studying period in study locations.	
Table (30):	Seasonal mean ±SE of water T. Hardness	118
	(mg/L) during studying period in study	
	locations.	
Table (31):	Seasonal mean ±SE of water total phosphors	120
	(mg/L) during studying period in study	
	locations.	
Table (32):	Seasonal mean ±SE of water ortho phosphors	121
	(mg/L) during studying period in study	
	locations.	
Table (33):	Seasonal mean ±SE of water Chlorophyll "a"	122
	(μ g/L) during studying period in study	
	locations.	
Table (34):	Annual mean ±SE of water Physicochemical	124

	parameters during studying period in study	
	locations.	
Table (35):	Seasonal mean ±SE of water <i>Bacillariophyceae</i>	128
	numbers (Ind./L x10 ⁴) during studying period in	
	study locations.	
Table (36):	Seasonal mean ±SE of water Chlorophyceae	130
	numbers (Ind./L x10 ⁴) during studying period in	
	study locations.	
Table (37):	Seasonal mean ±SE of water Cyanophyceae	132
	numbers (Ind./L x10 ⁴) during studying period in	
	study locations.	
Table (38):	Seasonal mean ±SE of water Euglenophyceae	133
	numbers (Ind./L x10 ⁴) during studying period in	
	study locations.	
Table (39):	Seasonal mean ±SE of water total	134
	phytoplankton numbers (Ind./L x10 ⁴) during	
	studying period in study locations.	
Table (40):	Annual mean ±SE of water Phytoplankton	135
	numbers (Ind./L $x10^4$) during studying period in	
	study locations.	
Table (41):	Seasonal mean ±SE of water Copepoda	137
	numbers (Ind./L $x10^3$) during studying period in	
	study locations.	
Table (42):	Seasonal mean ±SE of water Cladocera	139
	numbers (Ind./L $x10^3$) during studying period in	
	study locations.	
Table (43):	Seasonal mean ±SE of water Rotifers numbers	140
	(Ind./L $x10^3$) during studying period in study	

	locations.	
Table (44):	Seasonal mean ±SE of water Ostracoda	142
	numbers (Ind./L $x10^3$) during studying period in	
	study locations.	
Table (45)•	Seasonal mean +SE of water Total	143
	Zooplanktons numbers (Ind /I $\times 10^3$) during	1.0
	studying period in study locations	
	studying period in study locations.	
Table (46):	Annual mean \pm SE of water Zooplankton	144
	numbers (Ind./L x10 ³) during studying period in	
	study locations.	
Table (47):	Seasonal mean ±SE of water Fe (mg/L) during	146
	studying period in study locations.	
Table (48):	Seasonal mean ±SE of water Zn (mg/L) during	148
	studying period in study locations.	
Table (49):	Seasonal mean ±SE of water Cu (mg/L) during	150
	studying period in study locations.	
Table (50):	Seasonal mean ±SE of water Pb (mg/L) during	151
	studying period in study locations.	
Table (51):	Seasonal mean ±SE of water Cd (mg/L) during	152
	studying period in study locations.	
Table (52):	Annual mean ±SE of water Heavy metals	153
	(mg/L) during studying period in study	
	locations.	

LIST OF FIGURES

FIGURE		PAGE
Fig. (1):	Molecular structure of a keratin.	17
Fig. (2):	A map showing the study sites at Abbassa -	52
	Sharkia; Shader Azzam and Lake Manzala	
	(Alpashter algowany), Port Said, respectively.	
Fig. (3):	Standard curve of Bovine Serum Albumin.	60
Fig. (4):	Effect of different locations on average	69
	percentage of fungal flora community in four	
	seasons.	
Fig. (5):	Effect of different seasons on average	70
	percentage of fungal flora community in four	
	locations.	
Fig. (6):	Penicillium commune isolate LKF10-002 18S	75
	ribosomal RNA gene, partial sequence; internal	
	transcribed spacer 1, 5.8S ribosomal RNA gene,	
	and internal transcribed spacer 2, complete	
	sequence; and 28S ribosomal RNA gene, partial	
	sequence.	
Fig. (7):	Phylogenetic tree of Penicillium commune	75
	isolate.	
Fig. (8):	Effect of incubation period on growth and	77
	keratinase enzyme production by Penicillium	
	commune.	
Fig. (9):	Effect of pH-value on growth and keratinase	79
	enzyme production by <i>Penicillium commune</i> .	
Fig. (10):	Effect of incubation temperature on growth and	81
_	keratinase enzyme production by Penicillium	

	commune.	
Fig. (11):	Effect of different volumes of the basal medium	83
	on growth and keratinase enzyme production by	
	Penicillium commune.	
Fig. (12):	Effect of different sizes of inocula on growth	85
	and keratinase enzyme production by	
	Penicillium commune.	
Fig. (13):	Effect of different carbon sources on growth and	87
	keratinase enzyme production by Penicillium	
	commune.	
Fig. (14):	Effect of different concentrations of starch as	89
	carbon source on growth and keratinase enzyme	
	production by Penicillium commune.	
Fig. (15):	Effect of different nitrogen sources on growth	91
	and keratinase enzyme production by	
	Penicillium commune.	
Fig. (16):	Effect of different concentrations of yeast extract	93
	as nitrogen source on growth and keratinase	
	enzyme production by Penicillium commune.	
Fig. (17):	Gel-filtration of crude keratinase from	98
	Penicillium commune.	
Fig. (18):	SDS-PAGE analysis of keratinase from	100
	Penicillium commune, revealing purified enzyme	
	(after dialysis).	
Fig. (19):	Photos showing effect of ZnO nanoparticles on	101
	the growth of tested fungus Penicillium	
	commune.	
Fig. (20):	Seasonal mean of water temperature (°C) during	103

	studying period in study locations.	
Fig. (21):	Seasonal mean of water Secchi disc (cm) during	104
	studying period in study locations.	
Fig. (22):	Seasonal mean of water dissolved oxygen	106
	(mg/L) during studying period in study	
	locations.	
Fig. (23):	Seasonal mean of water pH during studying	107
	period in study locations.	
Fig. (24):	Seasonal mean of water salinity (g/l) during	109
	studying period in study locations.	
Fig. (25):	Seasonal mean of water electrical conductivity	110
	(mS/cm) during studying period in study	
	locations.	
Fig. (26):	Seasonal mean of water TDS (mg/L) during	111
	studying period in study locations.	
Fig. (27):	Seasonal mean of water NH ₃ (mg/L) during	113
	studying period in study locations.	
Fig. (28):	Seasonal mean of water NO_2 (mg/L) during	114
	studying period in study locations.	
Fig. (29):	Seasonal mean of water NO ₃ (mg/L) during	115
	studying period in study locations.	
Fig. (30):	Seasonal mean of water T. Alk (mg/L) during	117
	studying period in study locations.	
Fig. (31):	Seasonal mean of water T. Hardness (mg/L)	118
	during studying period in study locations.	
Fig. (32):	Seasonal mean of water total phosphors (mg/L)	120
	during studying period in study locations.	
Fig. (33):	Seasonal mean of water ortho phosphors (mg/L)	121

	during studying period in study locations.	
Fig. (34):	Seasonal mean of water Chlorophyll "a" (µg/L)	122
	during studying period in study locations.	
Fig. (35):	Annual mean of water Physicochemical	125
	parameters during studying period in study	
	locations.	
Fig. (36):	Seasonal mean of water Bacillariophyceae	128
	numbers (Ind./L $x10^4$) during studying period in	
	study locations.	
Fig. (37):	Seasonal mean of water Chlorophyceae numbers	130
	(Ind./L $x10^4$) during studying period in study	
	locations.	
Fig. (38):	Seasonal mean of water Cyanophyceae numbers	132
	(Ind./L $x10^4$) during studying period in study	
	locations.	
Fig. (39):	Seasonal mean of water Euglenophyceae	133
	numbers (Ind./L $x10^4$) during studying period in	
	study locations.	
Fig. (40):	Seasonal mean of water total phytoplankton	134
	numbers (Ind./L x10 ⁴) during studying period in	
	study locations.	
Fig. (41):	Annual mean of water Phytoplankton numbers	135
	(Ind./L $x10^4$) during studying period in study	
	locations.	
Fig. (42):	Seasonal mean of water Copepoda numbers	137
	(Ind./L $x10^3$) during studying period in study	
	locations.	
Fig. (43):	Seasonal mean of water Cladocera numbers	139

	(Ind./L $x10^3$) during studying period in study	
	locations.	
Fig. (44):	Seasonal mean of water Rotifers numbers (Ind./L	140
	$x10^3$) during studying period in study locations.	
Fig. (45):	Seasonal mean of water Ostracoda numbers	142
	(Ind./L $x10^3$) during studying period in study	
	locations.	
Fig. (46):	Seasonal mean of water Total Zooplanktons	143
	numbers (Ind./L x10 ³) during studying period in	
	study locations.	
Fig. (47):	Annual mean of water Zooplankton numbers	144
	(Ind./L $x10^3$) during studying period in study	
	locations.	
Fig. (48):	Seasonal mean of water Fe (mg/L) during	146
	studying period in study locations.	
Fig. (49):	Seasonal mean of water Zn (mg/L) during	148
	studying period in study locations.	
Fig. (50):	Seasonal mean of water Cu (mg/L) during	150
	studying period in study locations.	
Fig. (51):	Seasonal mean of water Pb (mg/L) during	151
	studying period in study locations.	
Fig. (52):	Seasonal mean of water Cd (mg/L) during	152
	studying period in study locations.	
Fig. (53):	Annual mean of water Heavy metals (mg/L)	153
	during studying period in study locations.	

ABSTRACT

In a study to biocontrole of keratinolytic fungi, the percentage of fungal flora community was higher in Shad. Azz. fish farm and Lake Manzala than G. fish farm and Private fish farm and was higher in spring and summer seasons than autumn and winter seasons. Lowest percentage was recorded in Private fish farm and in winter season. Several fungi were isolated and assay for keratinolytic activity; Penicillium commune, which had the highest keratinolytic activity was selected for further experimental studies. Several experiments were carried out to investigate the effect of some environmental as well as nutritional factors on the potentiality of *Penicillium commune* to grow and produce keratinase enzymes. It is cleared that the best environmental conditions and nutritional factors for highest growth and keratinase production were 7 days as incubation period at 6 pH-value and 30 °C in 50 ml of the medium by using 2 ml inoculum of tested fungus and addition of starch and yeast extract to the medium as carbon and nitrogen sources by the concentration of 0.6 g respectively. Purification of keratinase enzyme was carried out by salting out using ammonium sulfate $((NH_4)_2SO_4)$ at 80% saturation and then dialyzed against sucrose crystals then fractionation by sephadex G-100. Enzyme activity and protein content in each fraction were measured. Fractions which showed highest protein and keratinase activity were collected and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) which indicated that the molecular weight of the keratinase enzyme was 60 kDa. For biocontrole of *Penicillium commune* growth we used ZnO nanoparticles; we found that ZnO nanoparticles has no any effects on the fungal growth in comparison to the control.

Water analysis (physical, chemical and biological characteristics of water) and heavy metals residues; iron (Fe), copper (Cu), zinc (Zn),

cadmium (Cd) and lead (Pb) in water were carried out at the 4 locations. The results obtained revealed that: ammonia, nitrate, nitrite, and phosphorus were higher in Shad. Azz. fish farm, followed by Lake Manzala then the two fish farms in Abbassa. The harmful phytoplankton was significantly higher in Lake Manzala than other sites, but chlorophyll "a" was high in the private farm in Abbassa than other sites. This is due to the applied management system only. Also pollutant concentration of iron, zinc, copper, lead and cadmium were in the same direction. The study recommends the prevention of the use of sewage water in aquaculture.

AIM OF WORK

- Isolation of keratinolytic fungal flora from lake Manzala and some fish farms.
- Determination of fungal species which has the most keratinolytic effect.
- Investigation the effect of some environmental as well as nutritional factors on the potentiality of fungi to grow and degrade the keratinaceous substrate in order to produce keratinase enzyme.
- Purification of keratinase enzyme produced by fungi and detecting its molecular weight.
- Use of nanotechnology technique to biocontrol of keratinolytic fungal flora.
- Evaluation of water quality of some production fish farms in different locations and Lake Manzala areas.

Middle East Journal of Applied Sciences ISSN 2077-4613

Impacts of Some Environmental Conditions on Water Quality and Some Heavy Metals in Water of Different Aquaculture Sites

¹I. M. Shaker, ²G. H. Rabie, ²A. A. Ismaiel and ¹M. T.Mekawy

¹Central laboratory for Aquaculture Research, Abbassa – Sharkia, Egypt ²DepartmentofBotany,FacultyofScience,ZagazigUniversity,Sharkia,Egypt

ABSTRACT

This study aimed to evaluate the effect of some environmental conditions on water quality and concentrations of some heavy metals in some fish farms waters and Lake Manzala that lasted for four seasons. The sites of the diversity of water resources were the Lake Manzala, Al Aboty region (South Port said), brackish water; private fish farm used water from Bahr El Bakar drain directly (sewage wastewater), Shader Azzam region (Port Said Governorate); governmental fish Farm, Abbassa - Abou Hammad (agricultural drainage and ground water) and private fish farm in Abbassa - Abou Hammad (agricultural drainage water). Water, phytoplankton and zooplankton samples were collected once every season. The results obtained revealed that: ammonia, nitrate, nitrite, and phosphorus were higher in Shader Azzam fish farm, followed by Lake Manzala then the two fish farms in Abbassa. The harmful phytoplankton significantly higher in Lake Manzala than other sites but chlorophyll "a" was high in the private farm in Abbassa than other sites and this is due to the applied management system only. Also pollutant concentration of iron, zinc, copper, lead and cadmium were in the same direction. The study recommends the prevention of the use of sewage water in aquaculture.

Key words: Environmental condition; water quality; lakes; heavy metals; fish farms.

Introduction

Environmental conditions play an important role in determining the properties of physical, chemical, biological of water and affecting the accumulation of pollutants from heavy elements and then move to the fish and soil.

The environmental conditions in water bodies are constantly changed by various natural and human induced factors. The features of the physico-geographical environment of the catchment area, as well as the morphometric parameters of the water body and its hydrological regime, accelerate or block the supply of organic matter to the lakes, which affects its trophic level, water pH and hardness, its electrolytic conductivity and coloring, light and oxygen availability, and consequently algae and plant species diversity (Chobot and Banaś, 2008).Physical factors such as climate (i.e. temperature, wind, precipitation, and solarradiation) are also important determinants of water quality in lakes and all critically affect the lake's hydrologic and chemical characteristics, and indirectly affect the composition of the biological community (Najafpour et al., 2008). Also, water quality may be affected by the source of the water, rate of flow, nutrients and algae. Other factors like sewage and agricultural runoffs, various hazardous chemicals and natural contaminants (animal feces) reach the natural sources of water and also pollute the ground water by seeping (Hamill and Verburg, 2010).

Heavy metals are the most hazardous pollutants due to the speed of their dissemination in biosphere and their accumulative concentration. They permeate the environment by various means, penetrate the circle of metabolism, become toxic and disturb physiological functions of organism (Öztürk et al., 2009). While regulating constituents of food products, the World Health Organization (WHO) as well as the Food and Agriculture Organization (FAO) suggest monitoring the concentrations of heavy metals.

Studies on heavy metals in rivers, lakes, fish and sediments have been a major environmental focus especially during the last decade. Sediments are important sinks for various pollutants like pesticides and heavy metals and also play a significant role in the remobilization of contaminants in aquatic systems under favorable conditions and in interactions between water and sediment (Özmenet al., 2004; Fernandes et al., 2008; Öztürk et al., 2008; Pote et al., 2008 and Praveena et al., 2008).

Heavy metals such as copper, iron, chromium and nickel are essential metals since their play an important role in biological systems, whereas cadmium and lead are non-essential metals, as they are toxic, even in trace amounts (Fernandes et al., 2008). For the normal metabolism of the fish, the essential metals must be taken up from water, food or sediment (Canlı and Atlı, 2003). These essential metals can also produce toxic effects when the metal intake is excessively elevated (Tüzen, 2003). The aim of this study was to evaluate the

Corresponding Author: I. M. Shaker, Central laboratory for Aquaculture Research, Abbassa – Sharkia, Egypt E-mail: dr_ibrahim_shaker@yahoo.com