CONTENTS

Page

Part I	
INTRODUCTION	1
Review of literature	3
1.1 Definition and diversity of halophiles	3
1.2 Habitats of halophilic bacteria	3
1.3 Osmoadaptation mechanisms in prokaryotes	5
1.4 Media and conditions for the growth of halophilic bacteria	7
1.5 Potential application of halophiles	8
1.6 Polysaccharides	10
1.6.1 Microbial polysaccharide	10
1.6.2 Biosynthetic pathways of polysaccharide in bacteria	12
1.6.3 Factors affecting biosynthesis of polysaccharides in bacteria	13
1.6.4 Importance of polysaccharide to microbial cell	16
1.6.5 Roles of Microbial EPS in the Marine Environment	17
1.7 Characterization of Exopolysaccharids	19
1.8 Levan	20
1.8.1 Chemical structure	20
1.8.2 Mechanism of production	21
1.8.3 Application of levan	21
1.9 Chemical modification of polysaccharides	22
1.10 Product recovery and purification	23

Part **Π**

MATERIALS AND METHODS

2.1 Sample collection.	24		
2.2 Enrichment	24		
2.2.1. Enrichment medium.	24		
2.2.2. Isolation and purification	24		
2.2.3. Selection and screening of polysaccharide producing			
isolates	24		
2.3 Identification of the most potent bacterial isolates			
2.3.1 Biochemical tests	25		
2.3.2.Molecular identification on the basis of 16S			

2.3.2.2. 16 S rRNA sequencing tree topology determination
2.3.3. Sensitivity test for Differentiation between selected isolates.
2.4. Optimization of EPS production
2.4.1 Effect of pH on polymer production
2.4.2 Effect of incubation temperature on polymer production
2.4.3 Effect of sodium chloride concentrations on polymer
production
2.4.4 Effect of carbon source on polymer production
2.4.6 Effect of nitrogen sources on polymer production
2.4.8 Effect of phosphate sources on polymer production
2.4.10 Effect of culture storing at cold temperature on polymer
production
2.5. Phenol Sulphuric Acid Method for Total Carbohydrate
2.6. Characterization of extracted EPS
2.6.1 Fourier transformer Infrared spectroscopy <i>FTIR</i>
2.6.2 ¹ H NMR and ¹³ C NMR spectroscopy
2.6.3 Molecular mass determination
2.7. Isolation and purification of bacterial polysaccharides
2.8. Modification of bacterial polysaccharides:
2.8.1. Carboxymethylation
2.8.2. Sulphation
2.9. Biological activity for the original and modified
polymers
2.9.1 Anti-tumor activity
2.9.1Determination of prebiotic activity
2.9.2 Evaluation of fibrinolytic activity
2.10. Biofilm formation
2.11. Molasses pretreatment for polymer production

RESULTS

3.1 Isolation and screening of halophilic bacteria	34
3.2 Morphological and biochemical tests of isolates	36
3.3 16S rDNA identification the most potent two isolates	37
3.4. Differentiation between <i>Chromohalobacter salexigens</i> by	
antibiotic sensitivity	38

3.5. Optimization of Parameters controlling levan production	38
3.5.1. Effect of Initial pH	38
3.5. 2.Effect of Incubation temperature.	40
3.5. 3. Effect of sodium chloride concentrations	42
3.5. 4.Effect of carbon sources	44
3.5. 5 Effect of nitrogen sources	48
3.5. 6.Effect of phosphorus sources	52
3.5.7. Effect of culture storing at cold	
temperature	56
3.6. Chemical characterization of exopolysaccharide	57
3.6.1. FT-IR spectrums 5	7
3.6.2. ¹³ C and 1H NMR spectroscopy of KT6	57
3.6.3. ¹³ C and 1H NMR spectroscopy of KT7	51
3.6.4. Molecular mass determination	54
3.7. Levan modification	54
3.7.1Carboxymethylated levan	54
3.7.2. Sulphated levan	56
2.8. Piological activity	67
2.8.1 Anti tumor activity of layan	57 67
2.8. 2 Anti tumor activity modified loven CM loven and SA	57
lovon	68
282 Eibrinolytic activity of loyen KT6 and KT7 and their	90
substad derivatives SA KT6 and SA KT7	70
2 8 2 Drahiotia activity score	70 71
2.0. Piofilm formation	11 72
5.7. DIVININI IONNAUUNI	12 72
Production of levan on pretreated molasses as a source of sucrose	13

PartIII

DISCUSSION	75
English summary	82
References	86
Arabic summary	
LIST OF TABLES	

Table 1: Distribution of some major compatible solutes in
prokaryotes
Table 2: Some roles of microbial exopolymeric material EPS in
the marine environment
Table 3: Chemical and physical properties of collected samples
Table 4: Phenotypic features of the 10 isolates studied
Table 5: Antibiotic sensitivity assay for the two isolates
Table 6: Effect of initial PH on the EPS and biomass
production
Table 7: Effect of incubation temperature on the EPS and biomass
production
Table 8: Effect of sodium chloride concentration
Table 9: Effect of carbon source
Table 10: Effect of carbon source concentrations
Table 11: Effect of nitrogen source.
Table 12: Effect of nitrogen source concentrations
Table 13: Effect of phosphorus source.
Table 14: Effect of KH ₂ PO ₄ source concentrations
Table 15: Effect of culture storing at cold temperature on polymer
production
Table 16: Prebiotic activity of levan produced by the two strains
and its carboxy methylated derivatives
Table 17: production of levan on treated and untreated
molasses
Table 18: summery of the most effective conditions on levan
production
LIST OF FIGURES
Fig.1: Simplified diagram summarizing the biosynthesis of
polysaccharides in bacteria
Fig. 2: Chemical structure of levan
Fig. 3: Schematic representation of biosynthesis of levan
Fig. 4: Isolates showed slimy appearance on solid media
Fig. 5: Small ponds formed from the water percolating from Suez
Canal in El-kantara Gharb
Fig.6: Phylogenetic tree constructed based on the 16S rDNA gene
sequences
Fig. 7: Effect of initial pH on the EPS and biomass production of

A C.salexigens KT989776 B C.salexigens KT989777	39
Fig. 8: Effect of incubation temperature on the EPS and biomass	
production A C.salexigens KT989776 B C.salexigens KT989777	41
Fig. 9: Effect of sodium chloride concentrations A C.salexigens	
KT989776 B C.salexigens KT989777	43
Fig. 10: Effect of carbon sources on A C.salexigens KT989776 B	
C.salexigens KT989777	45
Fig. 11: Effect of carbon source concentrations on A C.salexigens	
KT989776 B C.salexigens KT989777	47
Fig. 12: Effect of nitrogen sources on A C.salexigens KT989776	
B C.salexigens KT989777	49
Fig. 13: Effect of nitrogen source concentrations A <i>C.salexigens</i>	
KT989776 B C.salexigens KT989777	51
Fig. 14: Effect of phosphorus sources A C.salexigens KT989776	
B C.salexigens KT989777	53
Fig. 15: Effect of phosphorus source concentrations A	
C.salexigens KT989776 B C.salexigens KT989777	55
Fig. 16: FT-IR spectrum of KT6 and KT7 bacterial	
polysaccharides produced by C.salexigens KT989776 B	
C.salexigens KT989777	57
Fig. 17: 600-MHz 1D ¹ H NMR spectrum of KT6 polysaccharide	
produced by <i>C.salexigens</i> KT989776 recorded in D ₂ O	58
Fig. 18:2D-COSY spectrum of KT6 polysaccharide produced by	
<i>C.salexigens</i> KT989776 recorded in D ₂ O	58
Fig. 19:2D-HSQC spectrum of KT6 polysaccharide produced by	
<i>C.salexigens</i> KT989776 recorded in D ₂ O	59
Fig. 20:2D-HMBC spectrum of KT6 polysaccharide produced by	
<i>C.salexigens</i> KT989776 recorded in D ₂ O	60
Fig. 21:1D-APT spectrum of KT6 polysaccharide produced by	
<i>C.salexigens</i> KT989776 recorded in D ₂ O	60
Fig. 22: 600-MHz 1D ¹ H NMR spectrum of KT7 polysaccharide	
produced by <i>C.salexigens</i> KT989777 recorded in D ₂ O	61
Fig. 23:2D-COSY spectrum of KT7 polysaccharide produced by	
<i>C.salexigens</i> KT989777 recorded in D ₂ O	62
Fig. 24:2D-HSQC spectrum of KT7 polysaccharide produced by	
C.salexigens KT989777 recorded in D ₂ O	62
Fig. 25: 1D-APT spectrum of KT7 polysaccharide produced by	

C.salexigens KT989777 recorded in D ₂ O	63
Fig. 26: 2D-HMBC spectrum of KT7 polysaccharide produced by	
C.salexigens KT989777 recorded in D ₂ O	64
Fig. 27: FT-IR spectrum of CM-KT6 and CM-KT7 bacterial	
polysaccharides produced by A C.salexigens KT989776 B	
C.salexigens KT989777	65
Fig. 28: FT-IR spectrum of SA-KT6 and SA-KT7 bacterial	
polysaccharides produced by A C.salexigens KT989776 B	
C.salexigens KT989777	67
Fig. 29: Cytotoxic effect of the dye against Hep-G2 cells using	
MTT assay. For KT6 &KT7 levan	68
Fig. 30: Cytotoxic effect of the dye against Hep-G2 cells using	
MTT assay. For CM-KT6 & SA-KT6 levan	69
Fig. 31: Cytotoxic effect of the dye against Hep-G2 cells using	
MTT assay. For CM-KT7 & SA-KT7 levan	70
Fig. 32: Fibrinolytic activity analysis of levan KT6 & KT7 and	
there sulphated and carboxymethylated drevatives	71
Fig. 33: Biofilm formation by C.salexigens KT989776 and	
C.salexigens KT989777	72
Fig. 34: Biofilm formation by A C.salexigens KT989776 B	
C.salexigens KT989777 in micro plate stained by crystal violet	73

ABBREVIATIONS

Abs. Absorbance. Amm: Ammonium. **APT:** Attached Proton Test ATCC: American Type Culture Collection. ATR: Attenuated Total Reflectance. C. salexigens: Chromohalobacter salexigens. CM: Carboxyethylated. **COSY:** Correlation Spectroscopy. **CPSs**: Capsular Polysaccharides. Da: Dalton **DMEM**: Dulbecco's Modified Eagle's Medium. DMF: Di-Methyl Formamide. DSS: 4,4-Dimethyl-4-Silapentane-1-Sulfonic Acid. EDTA: Ethylene Di amin Tetra Acetic acid. ELISA: Enzyme Linked Immune Sorbent Assay. EPS: Exo Polysacharide. **F** and **R**: Forward and Reverse. FBS: Fetal Bovine Serum. **FT-IR** : Fourier Transform Infra-Red. **GPC:** Gel Permeation Chromatography HMBC: Heteronuclear Multiple-Bond Correlation. HSQC: Heteronuclear Single Quantum Correlation. IC₅₀: Half maximal inhibitory concentration. Kb: Kilo Base. MTT :(3-[4, 5-di-Methylthiazole-2-yl]-2,5-diphenyltetrazolium bromide). NDP: Nucleoside Di-Phosphate. NMR: Nuclear Magnetic Resonance. **OD**: Optical Density. PCR: Polymerase Chain Reaction. SA: Sulfated. SGC: Sehgal and Gibbons Complex medium. **TCP:** Tricalcium Phosphate. **TSA**: Tryptic Soy Agar. **TSB** : Tryptic Soy Broth. **µg**: Micro Gram. *µ***L**: Micro Liter.

ABSTRACT

Newly isolated halophilic bacterial strains from Egyptian hyper saline source were identified as Chromohalobacter salexigens KT989776 and Chromohalobacter salexigens KT989777 were selected for its ability to produce extracellular polysaccharides. Following the optimization of initial pH, temperature, nitrogen, carbon, phosphorous sources In addition to determination of the optimum concentrations of these sources, sodium chloride concentration was also determined and incubation period of the growth medium. The resulted polymers from the two strains were identified by paper chromatography, NMR and FT-IR spectroscopy as a homopolymer levan. Chemical modifications (carboxymethylation and sulphation) were preceded and the biological activity (anti-tumor, fibrinolytic and prebiotic activity) of resulted levan and its derivatives were also determined. In addition, replacement of sucrose with molasses was tested. The optimum temperature and pH for levan production ranged between 25- 30 °C and 8, respectively. Optimum sodium chloride concentration and sucrose concentration was 15% and 30-50 gram per liter respectively. The most effective factor was the sequence incubation at 30 °C followed by storage at 4 ^oC which cause sharp increase in polymer production. Hence. Chromohalobacter salexigens has been described as a levan producer microorganism for the first time according to our knowledge. The maximum levan production was 10.5 and 11.9 mg per ml for C. salexigens KT989776 and C. salexigens KT989777 respectively under optimum conditions.

It was proved that the resulting levan and its derivatives exhibit anti-tumor, fibrinolytic and prebiotic activity.

Key words: Chromohalobacter salexigens, levan, carboxymethylation, sulphation and fibrinolytic, Halophiles.