CONTENTS

Number	Item	Page
1	Introduction	1
2	Review of literature	4
3	Material and Methods	21
4	Results	39
5	Discussion	63
6	Summary	73
7	Conclusion	75
8	References	76
9	Arabic summary	

LIST OF TABLES

Table	Title	Page
No.		
1	Number of collected fish from different species at different salinities of	21
	water	
2	Primers used for detection of gene virulence	27
3	Zone diameter interpretive standards	29
4	Colony characters of A.hydrophila isolates from fresh, brackish and	42
	marine water fish on different laboratory media	
5	Different fish species and positive isolates with the prevalence of A.	44
	hydrophila	
6	Incidence and distribution of A.hydrophila isolated from different sites	45
	of different Fresh water fish	
7	Incidence and distribution of A.hydrophila isolated from different sites	46
	of different brackish water fish	
8	Incidence and distribution of A.hydrophila isolated from different sites	47
	of different Marine water fish	
9	The biochemical activities of A.hydrophila isolates from fresh,	48
	brackish and marine fishes	
10	Biochemical characters of bacterial isolates by using colorimetric	49
	VITEC 2 compact system	
11	The hemolytic and proteolytic activities of <i>A.hydrophila</i> from different	50
	fish species	
12	The effect of NaCl concentrations on A.hydrophila growth on selective	53
	media	
13	Results of bacterial growth turbidity in TSB using colorimetric at WL	53
	610 nm	
14	Total bacterial count of A.hydrophila isolates on plate count agar	55
	containing different NaCl concentrations	
15	Reduction percentage of A.hydrophila isolates on plate count agar has	56
	different NaCl %	
16	Antibiogram sensitivity of A.hydrophila isolates from fresh, brackish	62
	and marine water fishes	

LIST OF FIGURES

Fig	Title	Page
No.		
1	Showing fresh water fish suffering from Aeromonas septicemic lesions	39
2	Showing brackish water fish suffering from Aeromonas septicemic	40
	lesions	
3	Showing marine water fish suffering from Aeromonas septicemic lesions	41
4	Indicating the colony characters on different media used for isolation of	43
	A.hydrophila	
5	Chart illustrating the prevalence of A. hydrophila isolated from different	44
	fish species	
6	Showing noticeable hemolytic and proteolytic activities of A.hydrophila	51
7	Congo red binding activity of A. hydrophila isolates	52
8	Results of the bacterial growth turbidity in relation to different salt	54
	concentrations on TSB	
9	Results of agarose gel electrophoresis of PCR product of Hemolysin and	58
	aerolysin genes of A.hydrophila	
10	Agarose gel electrophoresis shows RAPD PCR products of A.hydropila	59
11	The genetic variability of 3 isolates of A.hydrophila from fresh, brackish	60
	and marine water fishes	
12	The relationship between the isolates of A.hydrophila from fresh, brackish	60
	and marine water fishes by using RAPD PCR	
13	Comparative analysis of rates of antimicrobial susceptibility of	61
	A.hydrophila isolated from fresh, brackish and marine water fishes	

List of Abbreviations of GN card of VITEK system

Well	Test	Mnemonic	Amount/Well
2	Ala-Phe-Ppro-ARYLAMIDASE	APPA	0.0384 mg
3	ADONITOL	ADO	0.1875 mg
4	L-Pyrrolydonyl-ARYLAMIDASE	PyrA	0.018 mg
5	L-ARABITOL	IARL	0.3 mg
7	D-CELLOBIOSE	dCEL	0.3 mg
9	BETA-GALACTOSIDASE	BGAL	0.036 mg
10	H2S PRODUCTION	H2S	0.0024 mg
11	BETA-N-ACETYL-GLUCOSAMINIDASE	BNAG	0.0408 mg
12	Glutamyl Arylamidase pNA	AGLTp	0.0324 mg
13	D-GLUCOSE	dGLU	0.3 mg
14	GAMMA-GLUTAMYL-TRANSFERASE	GGT	0.0228 mg
15	FERMENATATION/GLUCOSE	OFF	0.45 mg
17	BETA-GLUCOSIDASE	BGLU	0.036 mg
18	D-MALTOSE	dMAL	0.3 mg
19	D-MANNITOL	dMAN	0.1845 mg
20	D-MANNOSE	dMNE	0.3 mg
21	BETA-XYLOSIDASE	BXYL	0.0324 mg
22	BETA-Alanine arylamidase pNA	BAlap	0.0174 mg
23	L-Proline ARYLAMIDASE	ProA	0.0234 mg
26	LIPASE	LIP	0.0192 mg
27	PALATINOSE	PLE	0.3 mg
29	Tyrosine ARYLAMIDASE	TyrA	0.0276 mg
31	UREASE	URE	0.15 mg

32	D-SORBITOL	dSOR	0.1875 mg
33	SACCHAROSE/SUCROSE	SAC	0.3 mg
34	D-TAGATOSE	dTAG	0.3 mg
35	D-TREHALOSE	dTRE	0.3 mg
36	CITRATE (SODIUM)	CIT	0.054 mg
37	MALONATE	MNT	0.15 mg
39	5-KETO-D-GLUCONATE	5KG	0.3 mg
40	L-LACTATE alkalinisation	ILATk	0.15 mg
41	ALPHA-GLUCOCSIDASE	AGLU	0.036 mg
42	SUCCINATE alkalinisation	SUCT	0.15 mg
43	Beta-N-ACYTYL-GALACTOSAMINIDASE	NAGA	0.0306 mg
44	ALPHA-GALACTOSIDASE	AGAL	0.036 mg
45	PHOSPHATASE	PHOS	0.0504 mg
46	Glycine ARYLAMIDASE	GlyA	0.012 mg
47	ORNITHINE DECARBOXYLASE	ODC	0.3 mg
48	LYSINE DECARBOXYLASE	LDC	0.15 mg
52	DECARBOXYLASE BASE	ODEC	N/A
53	L-HISTIINE assimilation	IHISa	0.0378 mg
56	COUMARATE	CMT	0.126 mg
57	Beta- GLUCORONIDASE	BGUR	0.0378 mg
58	O/129 RESISTANCE (comp.vibrio)	O129R	0.0105 mg
59	GLU-Gly-Arg- ARYLAMIDASE	GGAA	0.0576 mg
61	L-MALATE assimilation	IMLTa	0.042 mg
62	ELLMAN	ELLM	0.03 mg
64	L-LACTATE assimilation	ILATa	0.186 mg

6. SUMMARY

This study was carried out to isolate and characterize *A.hydrophila* from fresh, brackish and marine water fishes (different water salinities). Using traditional methods of isolation and biochemical characterization compared to the recent techniques as polymerase chain reaction.

In addition, to compare genetically between the 3 types of *A.hydrophila* isolates by using RAPD PCR. Moreover, check the antimicrobial sensitivity against *A.hydrophila* isolated from fishes live in different water salinities.

A total number of 170 fishes (100 fresh water, 40 brackish water, and 30 marine water fishes) from different farms in Alexandria, Kafr Elsheikh, and Behira governorates were collected from different water salinities. The prevalence of *A.hydrophila* was 47% (38% in fresh water fish, 65% brackish water fish, 53.3% in marine water fish).

A.hydrophila isolates were isolated on R-S media, SMART media, Aeromonas agar media, TCBS media, Nutrient agar, and tryptic soya agar giving the typical colony characters of the bacteria.

A.hydrophila isolates were tested for pathogenicity by inoculation into blood agar and skimmed milk agar 1% for hemolytic and proteolytic activity. All isolates showed β hemolysis and proteolytic activity.

A.hydrophila isolates were inoculated into trypticase soya broth with different NaCl concentration (0.5, 1, 2, 3, 4, 5 and 6%) and turbidity was measured by photometer at wave length 610 nm. The higher NaCl concentration, the lower turbidity was found. Moreover, reduction % of total bacterial count of *A.hydrophila* in relation to different concentration of NaCl in TSB after 10 fold serial dilutions by surface plating technique was calculated.

Hemolysin and aerolysin genes were detected by PCR from the isolates from different sources of fishes (fresh, brackish and marine water fishes).

RAPD PCR was used to differentiate genetically between the bacteria isolated from fresh, brackish and marine water fishes for the first time and we confirmed that there were genetic variations between the 3 types of isolates upon using 2 RAPD primers. This result explains the reasons why *A.hyrophila* can infect brackish and marine recently as it was known as a disease of fresh water fish mainly.

We tested the tolerance of *A.hydrophila* isolated from different salinities to different NaCl concentrations on broth and media. On broth, bacterial turbidity measured by colorimetric WL and we found that turbidity reduced with higher NaCl concentrations. On media we used total bacterial count and reduction percent to check the effect of NaCl% on total colony count for different dilutions; we found that isolates from marine water fishes can tolerate excess NaCl than fresh and brackish isolates.

A.hydrophila isolates from fresh, brackish and marine fish showed high resistance to Ampicillin (M10), Erythromycin (E15) Nalidixic acid (NA30), and Spectinomycin (SPT10). On the other hand, *A.hydrophila* isolates from fresh, brackish and marine fish showed high sensitivity to Enrofloxacin (EF10), Ofloxacin (OFX5) and Gentamicin (CN10). Polymixin (PB300 u) showed activity against *A.hydrophila* from brackish and marine water fishes only. Doxycycline (DO30) and Nitrofurantoin (F300u) were highly effective against brackish water isolates than others for the field application. Isolation of *A.hydrophila* from different water salinities raises the public health concern and the importance to find suitable methods to control the infection.