CONTENTS

INTRODUCTIO				
REVIEWS OF I	_			
1 Distiller □s		grains	with	solubles
(DDGS)				
1.1 Physical chara				
1.2 Chemical con	1			
1.3 Anti-nutrition	al factors in	DDGS		••••••
1.4 Use of DDGS	in fish diets			
1.4.1 Use of DDC	-			
1.4.2 Use of DDC	GS in catfish	diets		
1.4.3 Use of DDC		-		
2. Wet milling pro				
2.1. Physical char	acteristics of	f Foots		· · · · · · · · · · · · · · · · · · ·
2.2. Chemical con	nposition of	Foots		· · · · · · · · · · · · · · · · · · ·
2.3. By-products	from corn pr	ocessing simi	lar to Foots	
3. Fish cultured s	ystem			······
2.4 Digestibility t				
MATERIALS A	ND METH	ODS		· · · · · · · · · · · · · · · · · · ·
1 The experiment				
1.1. Feed ingredie	ents			· · · · · · · · · · · · · · · ·
1.2. Tested mater	ials preparat	ion		· · · · · · · · · · · · · · · · · · ·
1.3. Physical prop				
1.4. The experime				
1.5. Diets formula	ation	•••••		•••••
1.6. Diets compos				
2 Fish rearing sys				
3. The experimen				
3.1. Feeding regin				
4. Digestibility tr	ials			
5. Water quality.				
6. Measurements	of growth pe	erformance	•••••	
7. Analytical met	hods			· · · · · · · · · · · · · · · · · · ·

8. Economical evaluation	31
9. Statistical analysis	31
RESULTS AND DISCUSSION	32
1. Chemical composition of the experimental ingredients	32
2. Essential amino acids content of the experimental ingredients	33
3. Fatty acids content of the experimental ingredients	34
4. Chemical composition of the experimental diets	36
4.1. The first experimental diets	36
4.2. The second experimental diets	37
5. The first feeding experiment	38
5.1. Water quality measurements	38
5.2. Mortality	40
5.3. Feed and nutrients consumption	40
5.4. Digestibility trial	43
5.5. Growth performance parameters	47
5.6. Chemical composition and energy content of fish carcass	50
5.7. Protein, fat, ash and energy retention	52
5.8. Feed efficiency	55
5.9. Feeding costs	59
6. The second feeding experiment	60
6.1. Water quality measurements	60
6.2. Mortality	62
6.3. Feed and nutrients consumption	62
6.4. Digestibility trials	65
6.5. Growth performance parameters	68
6.6. Chemical composition and energy content of the experimental	
fish	71
6.7. Protein, fat, ash and energy retention	73
6.8. Feed efficiency	77
6.9. Feeding costs	79
SUMMARY AND CONCLUSION	81
REFERENCES	89
ARABIC SUMMARY	

LIST OF TABLES

Table		Page		
(1)	Chemical composition (%) of the ingredients (on DM			
	basis) used in formulating the experimental diets.	23		
(2)	Formulation (%) of the first experimental diets using			
	distiller dried grains with solubles (DDGS) and Foots as a			
	partial replacement of yellow corn.	26		
(3)	Formulation (%) of the second experimental diets using			
	distiller dried grains with solubles (DDGS) and Foots as a			
	partial replacement of soybean meal.	27		
(4)	Chemical composition (% DM) of the experimental	32		
	ingredients.			
(5)	Amino acids composition (% DM) of the experimental	33		
	ingredients.			
(6)	Fatty acids (% DM), of the experimental ingredients.			
(7)	Chemical composition (% DM) of the first experimental			
	diets.			
(8)	Chemical composition (% DM) of the second	37		
	experimental diets.			
(9)	Water quality measurements.	38 40		
(10)	Feed intake, CP, EE, NFE and energy intake of monosex			
	Nile tilapia (Oreocromis niloticus) fingerlings.			
(11)	Apparent digestibility coefficients (ADC %) of nutrients.	43		
(12)	Growth performance parameters of Nile tilapia	46		
	(Oreochromis niloticus) fingerling.	-		
(13)	Carcass composition of monosex Nile tilapia	50		
(1 1)	(Oreochromis niloticus) fingerlings.			
(14)	Retained protein, fat, ash and energy in monosex Nile 52			
(4 =`	tilapia (Oreochromis niloticus) fingerlings.	~ 4		
(15)	Feed efficiency parameters of monosex Nile tilapia	54		
	(Oreochromis niloticus) fingerlings.			

(16)	Feed cost (L.E) for one Kg weight gain produced by fish.		
(17)	Water quality measurements.		
(18)	Intake of feed, CP, EE, NFE and energy of monosex Nile	61	
	tilapia (Oreocromis niloticus) fingerlings.		
(19)	Apparent digestibility coefficients (ADC %) of nutrients.	64	
(20)	Growth performance parameters of Nile tilapia	66	
	(Oreochromis niloticus) fingerlings.		
(21)	Carcass composition (on DM basis) of monosex Nile	69	
	tilapia (Oreochromis niloticus) fingerlings.		
(22)	Retention of protein, fat, ash and energy in monosex Nile	71	
	tilapia (Oreochromis niloticus) fingerlings.		
(23)	Feed efficiency parameters of monosex Nile tilapia	73	

(24) Feed cost (L.E) for one Kg weight gain produced by fish. 77

(Oreochromis niloticus) fingerling.

LIST OF FIGUERS

Fig.		No.
(1)	Corn Ethanol processing – Dry milling	21
(2)	Corn starch processing – Wet milling	22
(3)	Feed intake, CP and NFE of monosex Nile tilapia (O.	41
	niloticus) in the first experimental diets.	
(4)	Apparent digestibility coefficient nutrients for the first	44
	experimental diets.	
(5)	Performance of Nile tilapia at the first experiment	47
(6)	Retained of protein, fat and ash in monosex Nile tilapia	53
	(O. niloticus) fed the first experimental diets.	
(7)	Feed conversion ratio (FCR) and protein efficiency ratio	55
	(PER) of monosex Nile tilapia fed the first experimental	
	diets.	
(8)	Protein productive values (PPV), fat productive values	56
	and energy utilization of monosex Nile tilapia fed the	
	first experimental diets.	
(9)	Intake of feed, CP, EE and NFE of monosex Nile tilapia	62
	(O. niloticus) in the second experimental diets.	
(10)	Apparent digestibility coefficient (ADC %) of the	65
	nutrients for the second experimental diets.	
(11)	Performance of Nile tilapia at the second experiment.	67
(12)	Retained of protein, fat and ash in monosex Nile tilapia	72
	(O. niloticus) fed the second experimental diets.	
(13)	Feed conversion ratio (FCR) and protein efficiency ratio	74
	(PER) of monosex Nile tilapia fed the second	
	experimental diets.	
(14)	Protein productive values (PPV), fat productive values	75
	and energy utilization of monosex Nile tilapia fed the	
	second experimental diets.	

ABSTRACT

Doaa Abdel-Fatah Shepl Fouda: Use of Some Corn Processing By-Products in Fish Diets. Unpublished Ph.D. Thesis, Department of Animal Production Faculty of Agriculture Ain Shams University, 2017.

The present study was conducted to evaluate the effect of partially replacing of Yellow corn (main source of energy) and soybean meal (main source of plant protein) by corn processing by-products such as distiller's dried grains with solubles (DDGS) or Foots on monosix Nile tilapia (*O. niloticus*) fingerlings. Two feeding experiments were carried out using almost isonitrogenous (25% CP) and isoenergetic diets. Yellow corn and Foots were replaced by 0, 20 and 40% of either DDGS or Foots.

Seven hundred and fifty tilapia fingerlings (of 10 ± 0.05 g initial weight) were randomly divided into two experiments. The each experiment contained five different groups with three replicates and 25 fingerlings.

First experiment

Feed intake was insignificant decreased (P> 0.05) when yellow corn was replaced by 20 or 40% of DDGS.

The growth performance parameters were decreased insignificantly in all substitution levels of DDGS or Foots. The FCR in the control diets showed the worst values compared to the all substitution levels of DDGS or Foots. The feed costs were decreased when substitute yellow corn by Foots (20% and 40%).

Second experiment

Feed intake in which replaced soybean meal by 20% and 40% of either DDGS or Foots showed significant decreased between the control diet and other treatments. Growth performance parameters were significant decreased with increasing substitution levels of DDGS or Foots. The control diet was the best FCR values followed by TP_4 (20% Foots). The feed costs /kg gain were increased by increasing substitution levels of soybean meal by DDGS or Foots, while the best feed cost for producing one kg of fish were obtained from the control followed by TP_4 (20% Foots).

The results concluded that the 20% substitution level of DDGS or Foots for yellow corn and soybean meal in Nile tilapia (*O. niloticus*) diets containing 25% CP had no adverse effects on the performances of the fish.