LIST OF CONTENTS

ACKNOWLEDEGMENT	I
OBJECTIVE	II
ABSTRACT	Ш
LIST OF CONTENTS	V
LIST OF TABLES	IX
LIST OF FIGURES	ΧI
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
2.1. Ecological studies	3
2.1.1.Incidence of insect species associated with cowpea crop at Sharkia Governorate	
2.1.2. Population fluctuation of aphid, <i>Aphis craccivora</i> and it's predators on cowpea crop	5
2.1.3. Population density of the cotton leafworm, <i>Spodoptera</i> littoralis	10
2.2. Control studies	11
Laboratory studies	11
2.2.1.Response of field and laboratory strains of <i>Spodoptera</i> . littoralis to the tested Insecticides	11
2.2.2. Impact of indoxacarb, methomyl and lufenuron on the behavior of some biological aspects of	
Spodoptera littoralis	18
2.2.3.Biochemical effects of tested insecticides on <i>Spodoptera</i> littoralis	22

			-	-				_
~		n	+	ī	n		\sim	~
	• 1						-	• 1

2.2.4.Effect of some insecticides on <i>Aphis craccivora</i> under	
laboratory conditions	28
2.2.5.Impact of insectsicides on the behavior of some biological	
aspects of Aphis craccivora	31
Field studies	32
2.2.6. Effect of certain insecticides against Spodoptera	
littoralis	32
2.2.7.Effect of some insecticides on Aphis craccivora under fiel	d
conditions	34
III.MATERIALS AND METHODS	39
3.1. Ecological studies	39
3.1.1.Incidence of insect species associated with cowpea crop at	t
Sharkia Governorate	39
3.1.2.Population fluctuation of aphid, Aphis craccivora and its	
predators on cowpea crop	40
3.1.3. Population density of <i>Spodoptera littoralis</i> on	
cowpea crop	41
3.2. Control studies	41
Laboratory studies	41
3.2.1.Response of field and laboratory strains of <i>Spodoptera</i>	
littoralis to the tested insecticides	44
3.2.2.Impact of indoxacarb, methomyl and lufenuron on the	
behavior of some biological aspects of	
Spodoptera littoralis	46

റ				
			ıe	

3.2.3. Biochemical effects of tested compounds on laboratory ar	ıd
field strains of Spodoptea littoralis larvae	46
a-Carbohydrate hydrolyzing enzymes	47
b-Chitinase enzyme	47
c-Acetyl cholinesterase(AChE)	48
d-Acid and alkaline phosphatases	48
3.2.4.Effect of insecticides, thiamethoxam 25% WG,pymetrozine 25% WG and chlorpyrifos-methy 1 22.5% EC on <i>Aphis craccivora</i>	
3.2.5.Impact of certain insecticides on the behavior of some	••
biological aspects of Aphis craccivora	49
Field studies	50
3.2.6.Effect of certain insecticides against Spodoptera littoralis of	on
cowpea crop	50
3.2.7. Effect of some insecticides against Aphis craccivora on	
cowpea crop	51
IV.RESULTS AND DESCUSSION	52
4.1. Ecological Studies	52
4.1.1.Incidence of insect species associated with cowpea crop at Sharkia Governorate	
4.1.2.Population fluctuation of aphid, <i>Aphis craccivora</i> and its predators on cowpea crop	53
4.1.3. Effect of cowpea plants age on Aphis craccivora	
Population	61

~~	nti	nı	10	٨

4.1.4. Population density of Spodoptera littoralis on
cowpea crop
4.1.5. Effect of plant age on population of Spodoptera littoralis on
cowpea plants during seasons 2015 and 2016 67
4.2.Control studies
Laboratory studies68
4.2.1. Response of field and laboratory strains of Spodoptera
littoralis to the tested insecticides
4.2.2.Impact of indoxacarb, methomyl and lufenuron on the
behavior of some biological aspects of
Spodoptera littoralis
4.2.3. Biochemical effects of tested compounds on laboratory and
field strains of <i>Spodoptera littoralis</i> larvae
- Carbohydrate hydrolyzing enzymes activity
-Acid, alkaline phosphatases and acetyl cholinesterase activities83
-Chitinase activity 86
4.2.4. Effect of tested insecticides on Aphis craccivora under
laboratory conditions
4.2.5. Impact of some insecticides on behavior of some biological
aspects of Aphis craccivora90
Field studies92
4.2.6.Efficacy of tested insecticides against Spodoptera littoralis
on cowpea crop92
4.2.7.Effect of tested insecticides against Aphis craccivora on
cowpea under field conditions
V. SUMMARY
VI.CONCLUSION 106
VII.REFERENCES 108
Arabic Summary

LIST OF TABLES

Table	Title	Page
1	Incidence of insect species associated with cowpea crop	52
2	Absolute and relative frequencies of insect pests associated with	53
	cowpea crops in three district at Sharkia Governorate	
3	Population fluctuation of aphid, Aphis craccivora and its predators	56
	associated with cowpea crop at Zagazig district during season 2015	
4	Population fluctuation of aphid, Aphis craccivora and its predators	56
	associated with cowpea crop at Zagazig district during season 2016	
5	Simple correlation between Aphis craccivora, its associated	58
	predatory insects and climatic factors on cowpea during season of	
	2015 and 2016 at Zagazig district.	
6	Effect of cowpea plants age on population of Aphis craccivora	61
	during seasons 2015 and 2016	
7	Weekly mean numbers of Spodoptera littoralis, mean temperature	63
	and R.H. % on cowpea at Sharkia Governorate during season 2015	
8	Weekly mean numbers of Spodoptera littoralis, mean temperature	63
	and R.H. % on cowpea at Sharkia Governorate during season 2016	
9	Simple correlation (r) values for Spodoptera littoralis on cowpea	64
	plants during seasons 2015 and 2016	
10	Effect of cowpea plants age on population of Spodoptera littoralis	67
	during seasons 2015 and 2016	
11	Response of field and laboratory strains of Spodoptera littoralis to	70
	the tested insecticides	
12	Effect of tested insecticides on the behavior of some biological	77
	aspects of Spodoptera littoralis	
13	Carbohydrate hydrolyzing enzymes activity of the 4 th instar larval	82

List of Tables

continued

Table	Title	Page
	homogenate of laboratory and field strains of Spodoptera littoralis	85
	after treatment with LC ₅₀ of each compound	
14	Phosphatases and acetylcholinesterase activities in the 4 th instar	85
	larval homogenate of laboratory and field strains of Spodoptera	
	littoralis (Boisd.) after treatment with LC ₅₀ of each compound	
15	Chitinase activity in the 4 th instar larval homogenate of laboratory	87
	and field strains of Spodopter alittoralis (Boisd.) after treatment	
	with LC ₅₀ of each compound	
16	Comparative toxicity of some insecticides against Aphis craccivora	89
	under laboratory conditions	
17	Effect of tested compounds on biological aspects of Aphis	91
	craccivora	
18	Efficacy of the tested insecticides against Spodoptera littoralis on	93
	cowpea plants under field conditions during 2015	
19	Efficacy of the tested insecticides against Spodoptera littoralis on	93
	cowpea plants under field conditions during 2016	
20	Mean reduction percentages of Aphis craccivora before and after	96
	different time interval when cowpea treated with some insecticides	
	at Sharkia Governorate in the field during season 2015	
21	Mean reduction percentages of Aphis craccivora before and after	96
	different time interval when cowpea treated with some insecticides	
	at Sharkia Governorate in the field during season 2016	

LIST OF FIGURES

Fig.	Title	Page
1.	Relative frequency occurrence of insect species associated with	54
	cowpea crop in total collected samples in three districits at	
	Sharkia Governorate	
2.	Population fluctuation of aphid and its predators during season	59
	2015 .	
3.	Population fluctuation of aphid and its predators during season	60
	2016	
4.	Population density of Spodoptera littoralis on cowpea crop	65
	during season 2015	
5.	Population density of Spodoptera littoralis on cowpea crop	66
	during season 2016	
6.	Toxicity lines of insecticide, Match on the 4 th larval instar of	71
	Spodoptera littoralis of laboratory and field strains	
7.	Toxicity lines of insecticide ,Betavaunt on the 4 th larval instar of	72
	Spodoptera littoralis of laboratory and field strains	
8.	Toxicity lines of insecticide Methomate on the 4 th larval instar of	73
	Spodoptera littoralis of laboratory and field strains	
9.	Malformation induced in 4 th instar larvae of <i>Spodoptera</i>	78
	littoralis treated with insecticides, Match, Methomate and	
	Betavaunt.	
10.	Toxicity lines of Chess 25%WG, Actara 25%WG and Reldan 22.5%EC against <i>Aphis craccivora</i>	89

ABSTRACT

This work is an attempt to obtain basic information concerning ecology of some insect species associated with cowpea plants, biology and control of major insect pests at Sharkia Governorate. Nine species belonging to 9 families were determined in the total collected samples. These species identified and classified according to their feeding habitats to two major groups i.e. harmful insects and predacious insects. Absolute and relative frequencies of occurrence for insect pests recorded on cowpea plants at the three localities, Belbees, Fakous and Zagazig, Sharkia Governorate were calculated. It was found that the most frequently species were Aphis craccivora Koch and Spodoptera littoralis (Boisd.). The percentage of their absolute frequency occurrence recorded 76.06 and 43.58%, respectively while their relative frequency occurrence was 38.86 and 22.26 %. Population dynamics of the major pests were studied during season 2015 and 2016 on cowpea crop at Zagazig district. Aphids and cotton leafworm showed two peaks of abundance during 2015 and three peaks during season 2016.

Six insecticides were used in this study, namely, indoxacarb, lufenuron and methomyl against *S. littoralis* and thiamethoxam, pymetrozine and chlorpyrifos-methyl against *Aphis craccivora* under field and laboratory conditions. Laboratory studies were conducted to study susceptibility of both laboratory and field strains of 4th instar larvae of the cotton leaf worm *S. littoralis* (Boisd.) to Match, Betavaunt and Methomate .The high differences in LC₅₀ values were observed between the laboratory and the field strains as demonstrated by resistance ratio of 12.58, 13.47 and 23.09-fold for Betavaunt, Methomate and Match respectively.

In regarding to the effect of tested insecticides on biological aspects of *S. littoralis*, the results cleared that all insecticides caused prolongation in larval duration, reduction in pupation and adult emergence percent with significant differences between laboratory and field strains.

In addition, the effect of tested insecticides on the activities of carbohydrate hydrolyzing enzymes (amylase, trehalase and invertase), phosphatases (acid and alkaline phosphatase), acetyl cholinesterase and chitinase were evaluated in the field strain of *S. littoralis* (Boisd.), compared with the laboratory strain.

As for aphids ,toxicity of the tested insecticides was studied and the results showed that, Chess was the most effective insecticide followed by Actara and Reldan. LC_{50} for the tested insecticides can be arranged in the following descending order: Chess, Actara and Reldan since LC_{50} values were 2.39, 20.35 and 34.08 ppm, respectively.

In regarding to biological aspects, results showed that there were significant differences between longevity and fecundity of *A. craccivora* compared with control for using the concentration LC₅₀ of insecticides. Going to field studies, results showed that, Match was the most effective insecticide against *S. littoralis* and exhibited the highest residual values which were 92.44% in the first season 2015 and 87.71% in 2016. Data indicated significant and high reduction percentages were recorded after 3 days of treatment against *A. craccivora*. Actara was the most effective insecticide which caused mean reduction percent 88.13% followed by Chess 79.37% while Reldan was the lowest one.