CONTENTS

	Pag
INTRODUCTION	1
REVIEW OF LITERATURE	6
1. Effect of some pre-and postharvest treatments on	•
fruit quality attribute and storability	6
a. Effect on fruit weight loss percentage (%)	6
b. Effect on fruit decay percentage (%)	10
c. Effect on fruit firmness (Ib/inch²)	15
d. Effect on fruit color	19
e. Effect on marketing life	21
f. Effect on total soluble solid (TSS) content (%)	. 23
g. Effect on total acidity percentage (%)	25
h. Effect on TSS/acidity ratio	28
i. Effect on total sugars (%)	29
j. Effect on reducing sugars (%)	31
k. Effect on total phenols	32
MATERIALS AND METHODS	35
RESULTS AND DISCUSSION	4 1
1.Pre-harvest experiment	41
a. Cold storage experiment	
(1) Fruit weight loss percentage	
(2) Fruit decay percentage	43
(3) Fruit firmness	
(4) General appearance	48
(5) Hue angle	51
(6) Fruit lightness	
(7) Total soluble solids content	
(8) Titratable acidity	56
(9) T.S.S / T.A ratio	
(10) Total sugar percentage	

(11) Reducing sugar p	percentage
	rcentage
(13) Marketing life	
b. Marketing life expe	erimen
(1) Fruit weight loss	percentage
(2) Fruit decay percen	ntage
(3) Fruit firmness	
(4) General appearan	ce
(5) Hue angle	
(6) Fruit lightness	
(7) Total soluble solie	ds content
(8) Titratable acidity.	
(9) T.S.S / T.A ratio	
(10) Total sugar percentage	entage
(11) Reducing sugar	percentage
(12) Total phenols per	rcentage
Postharvest experiment	t
a. Cold storage experi	ment
(1) Fruit weight loss	percentage
(2) Fruit decay percen	ntage
(3) Fruit firmness	
(4) General appearan	ce
(5) Hue angle	
(6) Fruit lightness	
	ds content
(9) T.S.S / T.A ratio	
(10) Total sugar percentage	entage
	percentage
	rcentage
a. Marketing life expe	riment

(1) Fruit weight loss percentage	100
(2) Fruit decay percentage	100
(3) Fruit firmness	102
(4) General appearance	103
(5) Hue angle	103
(6) Fruit lightness	104
(7) Total soluble solids content	104
(8) Titratable acidity	106
(9) TSS/T.A ratio	107
(10) Total sugar percentage	107
(11) Reducing sugar percentage	108
(12) Total phenols percentage	108
SUMMARY	109
REFERENCES	120
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	Effect of some pre-harvest treatments on weight loss % of Early Swelling peach fruits stored at 0±1°C during 2014 and 2015 seasons	42
2.	Effect of some pre-harvest treatments on Decay % of Early Swelling peach fruits stored at 0±1°C during 2014 and 2015 seasons	44
3.	Effect of some pre-harvest treatments on firmness (Ib/inch2) of Early Swelling peach fruits stored at 0±1°C during 2014 and 2015 seasons	47
4.	Effect of some pre-harvest treatments on General appearance (score) of Early Swelling peach fruits stored at 0±1°C during 2014 and seasons	49
5.	Effect of some pre-harvest treatments on hue angle (h°) of Early Swelling peach fruits stored at 0±1°C during 2014 and 2015 seasons	52
6.	Effect of some pre-harvest treatments on lightness (L*) of Early Swelling peach fruits stored at 0±1°C during 2014 and 2015 seasons	53
7.	Effect of some pre-harvest treatments on total soluble solid (TSS %) of Early Swelling peach fruits stored at 0±1°C during 2014 and 2015 seasons	55
8.	Effect of some pre-harvest treatments on titratable acidity (TA %) of Early Swelling peach fruits stored at 0±1 °C during 2014 and 2015 seasons	57
9.	Effect of some pre-harvest treatments on TSS /TA Ratioof Early Swelling peach fruits stored at0±1°Cduring 2014 and 2015 seasons	54

10.	Effect of some pre-harvest treatments on total sugarcontent (%) of Early Swelling peach fruits stored at 0±1 °C during 2014 and 2015 seasons	60
11.	Effect of some pre-harvest treatments on reducing sugar (%) of Early Swelling peach fruits stored at 0±1°C during 2014 and 2015 seasons	62
12.	Effect of some pre-harvest treatments on total phenols (mg/100gm) of Early Swelling peach fruits stored at 0±1°Cduring 2014 and 2015seasons	64
13.	Effect of some pre-harvest treatments on some physical parameters of Early Swelling peach fruits after 4 days of storage at room temperature during 2014 and 2015 seasons	68
14.	Effect of some pre-harvest treatments on some chemical parameters of Early Swelling peach fruits after 4 days of storage at room temperature during 2014 and 2015 seasons.	72
15.	Effect of some postharvest treatments on weight loss % of Early Swelling peach fruits stored at 0±1 °C during 2014 and 2015 season	76
16.	Effect of some postharvest treatments on Decay % of Early Swelling peach fruits stored at 0±1 °C during 2014 and 2015 seasons	78
17.	Effect of some postharvest treatments on firmness (Ib/inch²) of Early Swelling peach fruits stored at 0±1 °C during 2014 and 2015 seasons	81
18.	Effect of some postharvest treatments on General appearance (score) of Early Swelling peach fruits stored at 0±1 °C during 2014 and 2015 seasons	83
19.	Effect of some postharvest treatments on hue angle (ho) of Early Swelling peach fruits stored at 0±1 °Cduring	

	2014 and 2015 seasons	85
20.	Effect of some postharvest treatments on lightness (L*) of Early Swelling peach fruits stored at 0±1 °C during 2014 and 2015 seasons.	87
21.	Effect of some postharvest treatments on total soluble solid (TSS %) of Early Swelling peach fruits stored at 0±1 °C during 2014 and 2015 seasons	88
22.	Effect of some postharvest treatments on titratable acidity (T.A %) of Early Swelling peach fruits stored at 0±1 °C during 2014 and 2015 season	91
23.	Effect of some postharvest treatments on (TSS / TA ratio) of Early Swelling peach fruits stored at 0±1°C during 2014 and 2015 seasons	92
24.	Effect of some postharvest treatments on total sugar (%) of Early Swelling peach fruits stored at 0±1°C 2014 and 2015 seasons	94
25	Effect of some postharvest treatments on reducing sugar (%) of Early Swelling peach fruits stored at 0±1°C 2014 and 2015 seasons	96
26	Effect of some postharvest treatments on total phenols (mg/100gm) of Early Swelling peach fruits stored at 0±1°C 2014 and 2015 seasons	97
27.	Effect of some postharvest treatments on some physical parameters of Early Swelling peach fruits after 4 days of storage at room temperature during 2014 and 2015 seasons.	101
28	Effect of some postharvest treatments on some chemical parameters of Early Swelling peach fruits after 4 days of storage at room temperature during 2014 and 2015 seasons	105

LIST OF FIGURES

No	Title	Page
1.	Effect of some pre-harvest treatments on marketing life (days) of Early Swelling peach fruits after 35 days of cold storage at 0±1 °C during 2014 and 2015	
	seasons	66
2.	Effect of some postharvest treatments on marketing life (days) of Early Swelling peach fruits after 35 days of cold storage at 0±1 °C during 2014 and 2015	
	seasons	99

Name of Candidate: Ahmed Abdel Nabi Abdel Gayed Semida Degree: M.Sc. Title Of Thesis: Effect of Some Pre and Postharvest Treatments on Marketability

of Peach Fruits

Supervisors: Dr. Nabil Raafat Elsherbini

Dr. Mohamed Abdelkader Elkhishen

Dr. Samar Abdeltawab Shaarawi

Department: Pomology Approval:26 /11/ 2017

ABSTRACT

Studies related with the storage of peach fruits have great relevance in many fruit-growing countries, among which Egypt. The effects of pre-harvest sprays with calcium chloride and chitosan, separately and in combination, as well as post-harvest treatments with chitosan and ozone, on quality attributes, storability and marketability of 'Early Swelling' peach fruits were studied throughout the 2014 and 2015 seasons. In pre-harvest experiment, peach trees were sprayed twice with 1% or 2% calcium chloride. The 1st spraying was at pea stage, while the 2nd one was performed 10 days before fruit harvesting. Chitosan sprays were performed at 0.5% or 1%, alone or in combination with 1% and 2% calcium chloride, 10 days before harvesting. Untreated trees served as control. As for post-harvest, chitosan was applied at concentrations of 0.5 and 1%, ozone at concentrations of 0.5 and 1 ppm. Fruits were harvested at maturity stage for both experiments, packed and stored at (0 °C and 85-90 % RH) or at room temperature (25±2 °C). A number of physical and chemical parameters were evaluated on stored fruits at equal intervals (7 days for fruits stored at 0 °C for a total of 35 days, and 2 days for fruits stored at room temperature).

Results showed that pre-harvest application with 2% CaCl₂+1% chitosan was most effective in minimizing weight loss (%) and decay (%), as well as in maintaining maximum firmness, lengthening marketing life and keeping best general appearance. Fruit color was not affected by any of the treatments, in the meantime untreated fruits recorded higher total soluble solids (TSS%), total phenolic content, and lower titratable acidity TA, (%). These results were recorded for fruits stored at 0 °C and room temperature.

Post-harvest treatments with ozone at both concentrations recorded less weight loss, while decay incidence was significantly lowered by the treatments with 0.5% chitosan, 1% chitosan and 1 ppm ozone, in comparison to control fruits in the first and second season, maximum firmness was maintained with both the chitosan treatments. Likewise, treated fruits recorded higher scores of general appearances comparing to untreated ones. Meanwhile, untreated fruits recorded the highest loss of weight (%) and decay incidence (%), furthermore, higher TSS %, total phenols, and the lowest fruit firmness, TA% and Marketing life comparing to other treatments when fruits were kept at both 0 °C and room temperature conditions.

Key words: Peach, cv Early SwellingCaCl₂, chitosan, ozone, quality attributes