CONTENTS

	Page
LIST OF TABLES	i
LIST OF FIGURES	ii
LIST OF ABBREVIATIONS	iii
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Olive oil extraction	4
2.1.1. Pressure extraction system	5
2.1.2. Centrifugation system	7
2.1.2.1. Three-phase system	7
2.1.2.2. Two phase system	8
2.2. General characteristics of olive mill wastewater	8
2.3. Remediation of Olive Mill Wastewater	8
2.3.1. Physical treatments	8
2.3.1.1. Dilution	9
2.3.1.2. Sedimentation	9
2.3.1.3. Filtration	9
2.3.1.4. Flotation	9
2.3.1.5 Centrifugation	9
2.3.1.6 Membrane Processes	9
2.3.2. Physico-thermal processes	10
2.3.2.1. Evaporation/distillation	10
2.3.2.2. Dring	10
2.3.2.3 Pyrolisis	10
2.3.2.4 lagooning	10
2.3.3. Physico-Chemical Treatments	11
2.3.3.1. precipitation	11
2.3.3.2. coagulation and flocculation	11
2.3.3.3. Chemical oxidation processes	11
2.3.4.Biological treatments	11
2.4. 2.4. Effect of OMWW on the Environment	13

	Page
2.4.1. Effect on soil	14
2.4.2. Effect on water	14
2.4.3. Effect on Atmosphere	15
2.5. Utilization of OMWW	15
2.5.1. Use OMWW as medium for growth algae and	
edible mushroom	15
2.5.2. OMWW as Fertilizer	16
2.5.3 Use OMWW in composting	19
2.5.4. Recovery of Antioxidants from OMWW	19
2.5.5. Production of Biogas and Biopoymers	19
2.5.6. Recovery of Enzymes	20
2.5.6. Use as Pesticide	20
3. MATERIALS AND METHODS	21
3.1. MATERIALS	21
3.1.1. Sampling	21
3.1.2. Selected Microorganisms	21
3.1.3. Microbial media	21
3.1.4. Plant seeds	25
3.2. Experiments	25
3.2.1. Bioremediation of OMWW by Fungi	25
3.2.1.1. Isolation of fungi from OMWW	25
3.2.1.2.Screening for isolates efficient in phenolic compounds	
degradation and COD reduction	26
3.2.1.3.Comparison of the most potent isolate with <i>Pleurotus</i>	
columbinus as a reference	26
3.2.2. phycoremidiation of OMWW	26
3.2.3. Utilization of treated and untreated OMWW in irrigation	26
3.2.3.1. Germination test	26
3.2.3.2. Pot experiment	27
3.3. Methods of determination and analysis	28
3.3.1. Determination of total phenol	28

	Page
3.3.2. Determination of total carbohydrates	29
3.3.3 Determination of COD	29
3.3.4. Determination of pH and EC	29
3.3.5. Determination of microelements	29
3.3.6. Determination of total nitrogen	30
3.3.7. Determination of chlorophyll pigment	30
3.3.8. Decolorization Assay	30
3.3.9. Determination of dehydrogenase activity	30
3.3.10. Determination of Nitrogenase activity	30
3.3.11. Determination of CO_2 evolution	30
3.3.12. Determination of Indole Acetic Acid (IAA)	31
3.3.13. Determination of Gibberellins	31
3.4. Statistical analysis	31
4. RESULTS AND DISCUSSION	32
4.1. Fungal treatment of OMWW	32
4.1.1. Chemical Analysis of the collected OMWW samples	32
4.1.2. Isolation and Screening the efficiency of fungal isolates.	32
4.1.3. Comparison of the most potent fungal isolate with <i>Pleurotus</i>	
columbinus as a reference	34
4.1.3.1.Phenolic compounds degradation by fungal isolate 5 and	
Pleurotus columbinus	34
4.1.3.2.COD reduction by fungal solate 5 and <i>Pleurotus</i>	
columbinus	38
4.1.3.3.Decolorization of OMWW by fungal isolate 5 and	
Pleurotus columbinus	41
4.1.3.4. Growth of isolate 5 and <i>Pleurotus columbinus</i> in OMWW	44
4.1.3.5.pH and EC change after treatment by isolate 5 and	
Pleurotus columbinus	46
4.1.3.6.Determination of total carbohydrates in fungal treated	
OMWW	46

	Page
4.1.3.7.Determination of Indol Acetic Acid and Gibberellins	
contents in OMWW treated with P. columbinus.	48
4.2.Phycoremediation of OMWW by algae	51
4.2.1. Chemichal Analysis of OMWW	51
4.2.2. Degradation of phenolic compounds by algae	51
4.2.3 Reduction of COD value in OMWW by algal	55
4.2.4. Effect of algal strains and species on carbohydrate content	
of OMWW.	58
4.2.5. Decolorization of OMWW treated with algal strains and	
species	61
4.2.6. Growth of algal strain in OMWW	64
4.2.7. pH value of OMWW after treated with algae	66
4.2.8 Indol acetic acid (IAA) and gibberellins (GA)of OMWW	
after treated with algae treated with algae	68
4.3. Evaluation of treated OMWW as fertilizer	73
4.3.1. Plant height, shoot and roots weight	74
4.3.2. NPK of Shoot and root determination	78
4.3.4. Dehydrogenase and Nitrogenase activity in rhizosphere of	
pea	81
4.3.5. Determination of Chlorophyll, carotene and CO ₂ in peas	
plants	83
5. SUMMARY	85
6. REFERENCES	92
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
3.1	Physical and chemical properties of the	
	experimental soil	28
41	Chemical composition of OMWW from	
4.1	Agricultural Research Center	32
4.2	Effect of fungal isolates on phenol content and	
	COD of 25% diluted OMWW after 2 weeks	
	incubation at 28°C.	33
4.3	Degradation of phenolic compounds in OMWW at	
	different concentrations by fungal isolate 5,	
	compared to P. columbinus as reference.	36
4.4	Determination of COD (g/L), in OMWW at	
	different concentration by fungal isolate 5	
	compared to P. columbinus as reference.	39
4.5	Decolorization of OMWW by isolate 5 compared	
	to P. columbinus as reference	42
4.6	Growth of fungal isolate 5 and P. columbinus (dry	
	weight g/L) in OMWW at different concentrations,	
	incubated for 4 weeks at 28 ^o C	45
4.7	Determination of carbohydrate content (g/L)	
	released from P. columbinus in OMWW	47
4.8	Determination of Indole Acetic Acid and	
	gibberellins in 10% and 20% OMWW, treated with	
	P. columbinus	49
4.9	Chemical composition of OMWW collected from	
	Wadi Food industry	51
4.10	Degradation of phenolic compounds in 20%	
	OMWW by algae incubated at 30°C/3000 lux for	
	30days.	53

V

Table No.		Page
4.11	Degradation of phenolic compounds in 10%	
	OMWW by algae incubated at 30°C/3000 lux for	
	30days	54
4.12	Reduction of COD in 20% OMWW treated by	
	algae incubated at 30°C/3000 lux for 30days	56
4.13	Reduction of COD value in 10% OMWW by algae	
	incubated at 30°C/3000 lux for 30days.	57
4.14	Carbohydrate content (g/L) in 10 and 20% OMWW	
	treated with algal strains and species incubated at	
	30°C/3000 lux for 30days	59
4.15	Decolorization of OMWW of 10 and 20%	
	concentrations treated with algal strains and	
	species.	62
4.16	Growth of algal strains and species in OMWW at	
	20% and 10% concentrations	65
4.17	Change in pH of 20 and 10% OMWW treated with	
	algae.	67
4.18	Indole acetic acid and gibberellins contant at (20%)	
	OMWW concentrations treated with Spirulina	
	platensis and Wollea sp.	70
4.19	Growth parameters of Peas plants after 45days of	
	plantation, irrigated with 10% OMWW treated with	
	P. columbinus, Spirulina platensis and Wollea sp.	
	(diluted to 50% with tap water).	75
4.20	Shoot and root NPK of Peas plants after 45 days of	
	plantation, irrigated with 10% OMWW treated with	
	P. columbinus, Spirulina platensis and Wollea sp	
	then diluted to 50% with tap water	79

VII

Table No.	Page
4.21 Dehydrogenase and Nitrogenase activities in peas	
plants rhizosphere after 45days of plantation,	
irrigated with OMWW treated with P. columbinus,	
Spirulina platensis and Wollea sp and diluted to	
50%.	82
4.22 Determination of Chlorophyll, carotene and CO2 in	
peas plants after 45days of plantation, irrigated with	
OMWW treated with P. columbinus, Spirulina	
platensis and Wollea sp and diluted to 50%.	84

VIII

LIST OF FIGURES

Fig. No.		Page
2.1	Diagram of the three olive oil extraction methods.	5
2.2	Pressure extraction system	6
2.3	Olive oil extraction by centrifugation (continuous)	
	system	7
4.1	Effect of fungal isolates on phenolic compounds	
	degradation and COD reduction of 25% diluted	
	OMWW after 2 weeks incubation at 28°C	33
4.2a	Degradation of phenolic compounds in OMWW at	
	different concentrations by fungal isolate 5	37
4.2 b	Degradation of phenolic compounds in OMWW at	
	different concentrations by P. columbinus	37
4.3 a	Determination of COD in OMWW at different	
	concentrations as treated with isolate 5	40
4.3b	Determination of COD in OMWW at different	
	concentration as treated with P. columbinus	40
4.4	Decolorization of 10% OMWW by P. columbinus	
	after 4 weeks	43
4.5 a	Decolorization (O.D at 395nm) of OMWW at 40,	
	30, 20 and 10% by isolate 5	43
4.5b	Decolorization (O.D at 395nm) of OMWW at 40,	
	30, 20 and 10% by <i>P. columbinus</i>	44
4.6 a	Growth of isolate 5 (dry weight/L) in OMWW at	
	40, 30, 20 and 10% incubated for 4 weeks at 28°C	45
4.6 b	Growth of P. columbinus (dry weight,g/L) in	
	OMWW at 40, 30, 20 and 10% incubated for 4	
	weeks at 28°C	46
4.7	Determination of total carbohydrate in 10, 20, 30	
	and 40% OMWW treated with p. columbinus for 4	
	weeks.	48

Fig. No.		Page
4.8 a	Determination (IAA) in 10 and 20% OMWW	
	treated with P. columbinus.	50
4.8 b	Determination (GA) in 10 and 20% OMWW treated	
	with P. columbinus.	50
4.9	Degradation of phenolic compounds in 20%	
	OMWW by algae incubated at 30°C/3000 lux for	
	30days.	53
4.10	Degradation of phenolic compounds in 10%	
	OMWW by algae incubated at 30°C/3000 lux for	
	30days.	54
4.11	Reduction of COD in 20% OMWW by algae	
	incubated at 30°C/3000 lux for 30 days	57
4.12	Reduction of COD value in 10% OMWW by algae	
	incubated at 30°C/3000 lux for 30 days	58
4.13 a	Carbohydrate content in 20% OMWW by algal	
	strains and species incubated at 30°C/3000 lux for	
	30 days.	60
4.13b	Carbohydrate content in 10% OMWW by algal	
	strains and species incubated at 30°C/3000 lux for	
	30 days.	60
4.14 a	Decolorization of 10% OMWW treated with algae	63
4.14b	Decolorization of 20% OMWW treated with algae	63
4.15 a	Growth of algal strains and species (dry weight g/L)	
	in 20% OMWW	65
4.15b	Growth of algal strains and species (dry weight g/L)	
	in 10% OMWW	66
4.16 a	Change in pH of 20% OMWW treated with algae.	67
4.16 b	Change in pH of 10% OMWW treated with algae.	68
4.17 a	IAA content at 20 and 10% OMWW treated with	
	Spirulina platensis	71

71

Fig. No.		Page
4.17 b	IAA content at 20 and 10% OMWW treated with	
	<i>Wollea</i> sp	71
4.18 a	GA content at 20 and 10% OMWW treated with	
	Spirulina platensis	72
4.18 b	GA content at 20 and 10% OMWW treated with	
	Wollea sp	72
4.19 a	Plant height of Peas plants after 45days of	
	plantation, irrigated with 10% diluted OMWW	
	treated with P. columbinus, Spirulina platensis and	
	Wollea sp. then diluted to 50% with tap water	76
4.19 b	Shoot and root dry weight of Peas plants after	
	45days of plantation, irrigated with 10% OMWW	
	treated with P. columbinus, Spirulina platensis and	
	Wollea sp. then diluted to 50% with tap water	77
4.20 a	Shoot NPK of Peas plants after 45 days of	
	plantation, irrigated with OMWW treated with P.	
	columbinus, Spirulina platensis and Wollea sp then	
	diluted to 50% with tap water	80
4.20 b	Root NPK of Peas plants after 45 days of plantation,	
	irrigated with 10% OMWW treated with P.	
	columbinus, Spirulina platensis and Wollea sp then	
	diluted to 50% with tap water.	81

LIST OF ABBREVIATION

Mean
Olive mill wastewater
Chemical Oxygen Demand
Gibberellins
Indole Acetic Acid
Untreated olive mill wastewater
Treated olive mill wastewater
Bioaugmented olive mill wastewater
Two-phase olive mill wastewater
Triphenylformazan
Phenolic compounds Loss Index
Lignin peroxidase
Manganese- dependent peroxidase

SUMMARY

Olive oil industry produced of huge amounts of wastewater which contain large amount of organic matter and phenolic compounds. Olive mill wastewater (OMWW), when discharged into surface water which used for irrigating soils, affects physical and chemical properties of soils and plants due to formations of crust layer on the surface, preventing oxygen to pass the soil. This led to inhibition of microbial activity due to low dissolving oxygen concentrations in the soil, in addition to toxic effect on plants, polluted surface and underground water causes eutrophication process. Chemical oxygen demand (COD) of OMWW can be higher than sewage.

On the other hand, OMWW contains high amount of potassium, calcium, phosphorus and some plant hormones that can be used in agriculture application.

The study was therefore aimed to treat OMWW by degrading the phenolic compounds and reducing COD values using microorganisms and finally evaluate the use of treated OMWW in irrigating pea plant (*Pisum sativum*). Results of the research can be summarized as follows:

1. Physical and chemical properties of OMWW

- Two samples were collected one from waste water of agriculture research center (used for fungal treatment) and the other from Wadi Food Industry (used for algal treatment).
- pH of the two wastes was 5.4 and 4.8, and EC values were 17.2 and 13.4, respectively.

2. Biological treatment of OMWW using fungi

- a. Eight isolates and strains were obtained and cultivated in OMWW at 25% concentration for two weeks. Results revealed that fungal isolate 5 was the most efficient in degradation of phenolic compounds and reducing of chemical oxygen content.
- b. Fungal isolate 5 was compared to the fungus *Pleurotus columbinus*, result showed that *Pleurotus columbinus* had a higher

efficiency in degradation of phenolic compounds than the fungal isolate 5. The highest percentage was 86 and 58% in the lowest concentration of the waste 10% by *P. columbinus* and fungal isolate5 respectively after the fourth week of the incubation period.

- c. *P. columbinus* recorded the highest rate for decreased COD the precentage was 86.6% and fungal isolate 5 was recorded at 76.6% after the fourth week of the incubation period at the lowest concentration of 10%.
- d. Different concentrations of the waste ranging from 10 to 40% were used to study the effect of both fungus on their ability to remove the color of the waste. The highest color clearance was 79.4%, with *P. columbinus* in the concentration of 10% for the waste after the fourth week of the incubation period, while fungal isolate 5 achieved a reduction rate reached 49.3% on the same concentration and incubation period, while these percentages decreased at high concentrations of the waste.
- e. Biomass as a dry weight for both fungi after cultivated on OMWW.

Highest growth rate was 2.97 g / L in the first week at 10% reach to 7.58 g/L after the fourth week of the incubation period by *P*. *columbinus* while fungal isolate 5 was less than 2.8 g / L in the first week and 6.0 g /L in the fourth week. The results showed an inverse relationship between dry weight and incubation period at high concentrations 30 and 40%, where the growth of *P*. *columbinus* decreased from 1.14 to 0.89 g/L, and fungal isolate 5, decreased from 0.95 to 0.86 g/L at 40% of the waste concentration.

f. pH and electrical conductivity of OMWW as affected by Fungal isolate 5 and *Pleurotus columbinus*.

No significant results were found in the change in pH or electrical conductivity of the wastes at concentrations of 10 to 40% for

fungal isolate 5, but pH was reduced from 5.8 to 5.6 and the electrical conductivity was reduced from 2.4 to 1.95 dS/m by *P*. *columbinus* at 10% concentration of waste.

g. Carbohydrates and phytohormone as affected by the fungal biotreatment of OMWW.

Results showed a slight reduction in the total carbohydrate content in the concentration of 30 and 40% while the percentage increased in the concentration of 20 and 10%, being 3.10 and 4.37 g / L in concentration of 20% of the waste, while the quantity increased from 1.46 to 3.90 g / L in concentration of 10% after the fourth week of the period of incubation.

As for the change in level of growth hormones, it was estimated in the concentrations of 20 and 10% of the waste. The results showed a slight decrease in the level of Indole-acetic acid in the two concentrations than control, while increased the level of gibrellic acid in the concentration of 10% from 0.66 to 1.58 mg / l after the fourth week of the incubation period, while at the concentration of 20%, a slight reduction in the level of gibberellins was observed.

3. Biological treatment of OMWW by some algal strains and isolates.

Wollea sp. has the highest rate in degrade of phenolic compounds (68.9%), followed by *Spirulina platensis* (65.7%), at a concentration of 10% OMWW after 30 days. These ratios decreased in the concentration of 20% OMWW to reach 58.7% and 58% for *Wollea sp* and *Spirulina platensis* respectively after 30 days of incubation.

The highest percentage of COD reduction reached 63.98% by *Spirulina platensis* followed by *Wollea* sp., being 58.83% at the concentration of 10% of the waste after 30 days of incubation, and decreased in the concentration of 20% to 53.1% and 47.5% for the *Spirulina platensis* and *Wollea* sp. respectively.

a. Total carbohydrate as affected by treatment of OMWW by algae.

The increase in carbohydrate content after 10 days from 0.5 to 0.6 g /L at 10% of the wastes was decreased and increased from 1.16 to 1.30 g / L after 10 days at 20 % OMWW, the amount of carbohydrate began to decrease after 20 and 30 days of incubation period by *Spirulina platensis*, while the quantity was lower than the control in the other algae.

b. Algae efficiency to reduce the color of OMWW.

At 10% OMWW achieved the highest rate of color reduction, being 47% by *Wollea* sp. followed by *Spirulina platensis* 44.7% while in the 20% concentration, the percentage dropped to 41.9% and 40.9% by *Wollea* sp. and *Spirulina platensis* respectively after 30 days of incubation.

c. Algal growth as dry weight on OMWW.

There was a slight change in growth for all species after 10 days of growth in both concentrations but growth increased after 20 days of incubation. At 10% concentration of the waste was more suitable for algal growth than the concentration of 20% where growth increased from 0.51 to 0.841 g / L by *Wollea* sp followed by *Spirulina platensis*, where growth increased from 0.51 to 0.847 g / L at 10% concentration of the waste. This amount decreased at a concentration of 20% for the waste to 0.820 and 0.814 g / L by *Wollea* sp. and *Spirulina platensis* respectively after 30 days of incubation.

d. pH value of the waste after treatment by algae.

The pH increased from 4.8 to 7.7 by *Spirulina platensis* after 30 days of incubation followed by *Chlorella vulgaris* where it reached 6.4 at 10% OMWW.

e. Phytohormones as affected by algal treatment of OMWW.

Growth hormones were estimated by *Wollea* sp. and *Spirulina platensis*. The results showed an increase of indole acetic acid from 16.23 to 19 μ g/ ml after 30 days of incubation while gibberellins increased from 1.11 to 1.55 mg / ml by *Spirulina platensis* at 10% OMWW. The amount of these hormones is slightly increased by *Wollea* sp. at a concentration of 10% OMWW.

A slight decrease of indole - acetic acid and gibberellins than control at 20% OMWW for both algae.

4. Use of biologically treated OMWW in irrigation of pea plant.

Treated wastewater by *P. columbinus*, *Wollea* sp. and *Spirulina platensis* was applied in irrigated of pea plants after mixing with tab water at rate 50% and compared to untreated OMWW and tab water as control, where use two level of mineral nitrogen fertilization at a rate 100%N and 75%N and impact of these treatments on the plants was studied and the results are summarized as follows:

4.1. Plant lengths and dry weight of shoots and roots

plant lengths and dry weight of shoot and root of the plants were increased in all treatment than plants irrigated with the untreated wastewater, while the highest length and weight achieved by plants irrigated with OMWW treated with *Spirulina platensis* at 100 %N than 75%N followed by *P. columbinus* at 100%N.

4.2. Total Nitrogen, Phosphorus and Potassium in shoot system.

The highest percentage of total nitrogen was found in shoot system with the plants that were irrigated with *Spirulina platensis* at 100% N fertilization rate. The highest percentage of phosphorus achieved in plants irrigated with OMWW treated by *P. columbinus* at 100% N fertilization rate. While the highest yield of potassium was obtained by plants treated with untreated OMWW. The ratio of nitrogen, phosphorus and potassium was increased in all treatments than control.

4.3. Total nitrogen, phosphorus and potassium in the root system.

The highest total nitrogen was given by *Wollea* sp. at fertilization rate of 100%N, while the percentage of phosphorus and potassium increased in plants irrigated with untreated OMWW at rate 100%N.

4.5. Dehydrogenase activity in rhizosphere region.

In contrast to nitrogen, phosphorus and potassium, the enzyme dehydrogenase showed the highest percentage of the plants were fertilizer at the rate of 75% N which irrigated with *P. columbinus*-treated waste.

4.6. Nitrogenase activity in rhizosphere region.

The activity of this enzyme increased in all treatments than control and achieved the highest ratio by plants irrigated with treated OMWW by *Wollea* sp., at 75%N, indicating an inverse relationship between increased fertilization rate and increased activity of dehydrogenase and nitrogenase in soil.

4.7. Chlorophyll content and carotenoids in the leaves

The highest quantity of Chlorophyll content and carotenoids was achieved by plants irrigated with treated wastewater by *Wollea* sp. at rate 100% N followed by plants irrigated with *P. columbinus*-treated OMWW.

4.8. CO₂ evolution in the rhizosphere region.

The rate of CO_2 evolution was increased in all treatments for plants irrigated with treated and untreated OMWW than control. The highest rate was recorded by plants irrigated with OMWW treated by *P*. *columbinus* at 75%N.

Generally, it could be concluded the following:

1- Possibility of treating OMWW resulting from olive oil industry which pollutig the environment can be treated by fungi *Pleurotus columbinus* and some algae *Wollea* sp. and *Spirulina platensis*.

- 2- Transformation of the components of olive mill wastewater from high toxicity components to less toxic components by these microbes was achieved and possibility of using this waste in agriculture application because it contains nutrients and elements which useful for plant and soil.
- 3. Use of treated olive mill wastewater as bio-fertigation of pea plant resulting in an increased of growth and improve the properties of the plant parameters. Improve of shoots and roots growth and increased the level of activity of dehydrogenase and nitrogenase and rate of carbon dioxide evolution, reflect the increase of microbial activity in soil.