Contents

Subject	Page
1. INTRODUCTION	1
2. REVIEW OF LITRTATURE	4
2.1.Salt affected soils	4
2.1.1. Definition of salt-affected soils	4
2.2.Classification of salt-affected soils	5
2.2.1. Saline soils	5
2.2.2. Sodic or alkali soils	5
2.2.3. Saline-sodic soils	6
2.3.Some characteristic of salt affected soils	7
2.3.1. Soil chemical properties	7
2.3.2. Soil physical properties	8
2.3.3. Soil biological properties	9
2.4. Relationship between salt-affected soils and production of	10
crops	10
2.5.Effect of magnetite (magnetic iron) on growth and yield	11
plants	11
2.6.Effect of organic amendments on some soil properties	15
2.6.1. Some soil chemical properties	15
2.6.1.1. Soluble salt content, SAR and ESP	15
2.6.1.2. Soil pH	16
2.6.1.3. Organic matter content	17
2.6.1.4. Availability nutrients in soil	17
2.6.2. Some soil physical properties	19
2.6.3. Effect of organic amendments on growth and yield of	21
plants	21
2.7.Effect of sugar lime on some soil properties	23
3. MATERIAL AND METHODS	24
3.1.Experimental work	24
3.2.Magnetite	26
3.3.Vermicompost	27

3.4.Industrial wastes	
3.5.Methods of analysis	28
3.5.1. Soil sampling	28
3.5.2. Soil analysis	28
3.5.3. Plant analysis	30
3.5.4. Statistical analysis	31
4. RESULTS AND DISCUSSION	32
4.1.Effect of treatments on some soil chemical properties	32
4.2.Effect of treatments on some physical properties	37
4.3. The effect different treatments on soil available nutrient	39
contents	
4.4.Plant nutrient contents as affected by ameliorating soil properties	43
4.5.Influence of applied different treatments on grain yield of wheat and maize plants	49
4.6.Influence of applied magnetic iron Levels on wheat and maize yield parameters	51
4.7.Evaluate the studied treatments	53
5. SUMMARY AND CONCLUSION	56
6. REFERENCES	61
7. ARABIC SUMMARY	

Table	Subject	No.
1.	Some chemical and physical properties of the studied soil	26
2.	The main chemical characteristics and nutrients status of vermicompost	27
3.	Some characteristics of sugar industrial wastes	28
4.	The effect of the studied treatments on some chemical properties of soil after wheat	34
5.	The effect of the studied treatments on some chemical properties of soil after maize	35
6.	The effect of treatments on some physical properties of the soil	38
7.	The effect of the studied treatments on available soil macronutrient and micronutrients after wheat	40
8.	The effect of the studied treatments on available soil macronutrient and micronutrients after maize	42
9.	The effect of the studied treatments on the concentration of macronutrients and micronutrients in wheat grain	45
10.	The effect of the studied treatments on the uptake of macronutrients and micronutrients in wheat grain	45
11.	The effect of the studied treatments on the concentration of macronutrients and micronutrients in wheat straw	46
12.	The effect of the studied treatments on the uptake of macronutrients and micronutrients in wheat straw	47
13.	The effect of the studied treatments on the concentration of macronutrients and micronutrients in maize grain	48
14.	The effect of the studied treatments on the uptake of macronutrients and micronutrients in maize grain	48
15.	The effect of the studied treatments on wheat and maize yield	50
16.	The effect of the studied treatments on wheat and maize return	54

LIST OF TABLES

Subject FIG. No. The effect of different treatments on relative decrease values of 1. 34 EC_e after wheat The effect of different treatments on relative decrease values of 2. 34 ESP after maize The effect of different treatments on relative increase values over 3. 35 control % of CEC after wheat The effect of different treatments on relative increase values over 4. 35 control % of O. M after wheat The effect of different treatments on relative decrease values of 5. 36 EC_e after maize The effect of different treatments on relative decrease values of 6. 36 **ESP** after maize The effect of different treatments on relative increase values over 7. 36 control % of CEC after maize The effect of different treatments on relative increase values over 8. 36 control % of O. M after maize The effect of different treatments on relative decrease values of 9. 38 bulk density The effect of different treatments on relative increase values of 10. 39 total porosity The effect of different treatments on relative increase values over 11. 39 control % of hydraulic conductivity The effect of different treatments on relative increase values over 12. 39 control % of available water The effect of different treatments on relative increase values over 13. 41 control % of total soil N% after wheat The effect of different treatments on relative increase values over 14. 41 control % of available soil macronutrient after wheat The effect of different treatments on relative increase values over 15. 41 control % of available soil micronutrient after wheat

LIST OF FIGURES

16.	The effect of different treatments on relative increase values over	
	control % of total soil N% after maize	42
17.	The effect of different treatments on relative increase values over	42
	control % of available soil macronutrient after maize	
18.	The effect of different treatments on relative increase values over	42
	control % of available soil micronutrient after maize	
19.	The effect of different treatments on relative increase value over	46
	control % of macronutrients uptake in wheat grain	
20.	The effect of different treatments on relative increase value over	46
	control % of micronutrients uptake in wheat grain	
21.	The effect of different treatments on relative increase value over	47
	control % of macronutrients uptake in wheat straw	
22.	The effect of different treatments on relative increase value over	47
	control % of macronutrients uptake in wheat straw	
23	The effect of different treatments on relative increase value over	49
23.	control % of macronutrients uptake in grain maize	
24.	The effect of different treatments on relative increase value over	49
	control % of micronutrients uptake in grain maize	
25.	The effect of different treatments on relative increase value over	51
	control % of grain wheat yield	
26.	The effect of different treatments on relative increase value over	
	control % of straw wheat yield	51
27	The effect of different treatments on relative increase value over	51
27.	control % of grain maize yield	
28.	The effect of different treatments of total net yield L. E	55
29.	The effect of different treatments on over control of total net	55
	return amendment L. E	
30	The effect of different treatments on relative increase value over	55
	control % of total net yield	22

ABSTRACT

This study was carried out on clayey soil at kom Abou-Khallad village, Nasser district, Beni-Suef Governorate, Egypt during the winter season of 2014/2015 (Wheat) and summer season of 2015 (Maize) Also, this study aims at investigating effects of the studied treatments on improving some physical and chemical properties of saline soil, using magnetite (Magnetic iron), Vermicompost and mixture of filter mud and sugar lime 1:1 w/w experiment. In addition, improving some physical and chemical properties of saline soil using vermicompost, magnetite (magnetic iron) and sugar industry wastes (mixture of filter mud and sugar lime 1:1 w/w).

The main purpose of this work was:

- 1. Evaluate the effect of (sugar lime + filter mud) application in combination with magnetite and organo-stimulant (vermicompost) on improving of some chemical and physical properties of salt affected clay soils.
- 2. Evaluate the effective role of applied (Filter Mud+ Sugar Lime), magnetite and vermicompost as solely in combined treatments on the tolerance of wheat and maize plants grown under a slight soil salinity condition.
- 3. Evaluate the studied amendments economically.

The experiment had 13 treatments as follow:

$$T_1 = Control$$

- $T_2 =$ Magnetite (100 K.g fed⁻¹)
- $T_3 =$ Magnetite (150 K.g fed⁻¹)
- T_4 = Magnetite (200 K.g fed⁻¹)
- $T_5 = Vermicompost (2.5 Mg fed^{-1})$
- $T_6 = Vermicompost (3.3 Mg fed^{-1})$
- $T_7 = Vermicompost (4 Mg fed^{-1})$
- T_8 = Filter Mud and Sugar Lime Mix (1:1) (6.7 Mg fed⁻¹)
- T_9 = Filter Mud and Sugar Lime Mix (1:1) (10 Mg fed⁻¹)
- T_{10} = Filter Mud and Sugar Lime Mix (1:1) (13.3 Mg fed⁻¹)
- T_{11} = Magnetite (100 K.g fed⁻¹) and Vermicompost (2.5 Mg fed⁻¹)
- T_{12} = Magnetite (100 K.g fed⁻¹) and Filter Mud and Sugar Lime Mix (1:1) (6.7 Mg fed⁻¹)
- T_{13} = Filter Mud and Sugar Lime Mix (1:1) (6.7 Mg fed⁻¹) and Vermicompost
- $(2.5 \text{ Mg fed}^{-1})$

From the obtained result, of this experiment it could be concluded that:

- **A.** Adding magnetite (magnetic iron), vermicompost and sugar industry wastes (mixture filter mud and sugar lime 1:1 w/w) and their mixture, improved the chemical and physical properties of salt-affected soil.
- **B.** Application of T10 = Filter Mud and Sugar Lime Mix (1:1) (13.3 Mg fed-1), gave the highest decrease in values of electrical conductivity (EC), (ESP), and increased of (O.M content and CEC) which lead to improving the chemical properties of salt-affected soil. Also, increased the total porosity and hydraulic conductivity, which render easy to get rid of the salts and the bulk density decreased.
- **C.** Application of T10 = Filter Mud and Sugar Lime Mix (1:1) (13.3 Mg fed-1), gave the highest increase of wheat and maize yield.
- **D.** The results showed that the top three practical and economic parameters of the field experiment were (T7, T13, T10) respectively where the increase values were (79.34, 66.91, 65.20) as compared to control.

Key words: magnetic iron, vermicompost, sugar industry wastes, amendments, wheat, maize, Salt-affected Soils.