List of contents

T . T	1
Introduction	1
1-Review of literatures	4
1.1.Back ground	4
1.2. Incidence of brucella in milk	5
1.3.detection of brucella in milk	6
1.3.1. Milk Ring Test	6
1.3.2. Bacteriological detection	10
1.3.3.Molecular detection	13
1.4.Molecular detection of virulence genes	18
1.5.Pathogenisity of brucella to human beings	22
1.6.Control measures	24
1.7.Economic impact	28
2 -Materials and methods	31
2.1. Materials	31
2.1.1.Milk samples	31
2.1.2. <i>Brucella</i> antigens	31
2.1.3. Selective media and supplements for isolation	31
2.1.4. Differential media for suspected isolates	32
2.1.5. Stains	32
2.1.6. Diluents and Solutions	32
2.1.7. Antisera	33
2.1.8. Lyophilized reference <i>brucella</i> strains	33
2.1.9. Materials for polymerase chain reaction (PCR)	33
2.1.10. Equipment	37
2.2. Methods	38
2.2.1. Preparation of milk samples	38
2.2.2. Preparation of laboratory media	38
2.2.3. Milk Ring Test (MRT)	39
2.2.4. Bacteriological examination of milk samples	39
2.2.5. Molecular identification using PCR technique	41
2.2.6. Statistical analysis	49
3-Results	50
4-Discussion	63
5-Summary	69
6-Conclusions and recommendations	72
7-References	74
Arabic summary	

LIST OF TABLES

NO	TITLE	Page		
Α	Kogene biotec Kit components for DNA extraction	33		
В	Gene JET Genomic DNA Purification Kit components			
С	Oligonucleotide primers for brucella melitensis virulence genes	35		
D	Oligonucleotide primers for brucella species	36		
Ε	Reconstitution of Primer design kit components	43		
F	Master mix preparation RT-PCR for detection of <i>brucella</i> species			
G	Thermal profile of RT-PCR for detection of brucella species	44		
Η	Interpretation of RT-PCR results	44		
Ι	Master mix preparation of conventional PCR for detection of virulence genes			
J	Thermal profile of conventional PCR for detection of <i>bvfA</i> and <i>Ure</i> genes	45		
K	Thermal profile of conventional PCR for detection of <i>virB</i> gene	46		
L	Master mix preparation of conventional PCR for detection of <i>brucella</i> isolates	48		
М	Thermal profile of conventional PCR for detection of <i>brucella</i> isolates	49		
1	Incidence of brucella in milk samples (n=200)	50		
2	Incidence of brucella in milk samples regarding seasons and sites (n=200)	51		
3	Sensitivity and specificity of different tests in relation to RT- PCR as gold standard (n=200)	52		
4	Biochemical, serological tests used for identification of brucella isolates	53		
5	Incidence of brucella melitensis virulence genes in positive milk samples by conventional PCR (n=43)	54		
6	Incidence of brucella melitensis Virulence genes in brucella isolates by conventional PCR (n=5)	54		

LIST OF FIGURES

NO	Title	Page		
1	Colonies on <i>brucella</i> agar media appeared round with smooth margins, round edges, translucent and of golden color (pale honey colored).	55		
2	The <i>brucella</i> organisms appear as Gram negative coccobacilli with Gram's stain.	55		
3	RT-PCR assays of Genus-specific <i>L-glutamine 2-deoxy scylloinosose amino transferase</i> gene PCR amplified <i>brucella</i> specific DNA extracted from 200 milk samples.	56		
4	Agarose gel electrophoresis PCR assay showed amplifiedfragment of 498bp with <i>brucella abortus</i> and 731bp <i>brucella</i> 57 <i>melitensis</i> specific primer for IS711 gene.			
5	Agarose gel electrophoresis PCR assay showed amplified fragment of 2100bp with <i>brucella melitensis ure</i> gene specific primer.	58		
6	Agarose gel electrophoresis PCR assay showed amplified fragment of 1282bp with <i>brucella melitensis bvfA</i> gene specific primer.	59		
7	Agarose gel electrophoresis PCR assay showed amplifiedfragment of 881bp with brucella melitensis virB gene60specific primer.			
8	Incidence of brucella in milk samples according to different tests and sites.	61		
9	Relative sensitivity and specificity of MRT and culture method.	61		
10	Incidence of virulence genes in positive milk samples.	62		

LIST OF ABBREVIATIONS

ABBREVIATIONS	TERM
AHRI	Animal health research institute
AMOS	Abortus, Melitensis, Ovis, Suis
BAPT	Buffered antigen plate test
Bcsp31	Brucella genus specific gene
bvfA	Brucella virulence factor A gene
Cfu/g	Colony forming unit per gram
СТ	Cycle threshold
dNTPs	De oxy nucleotide tri phosphates
EDTA	Ethylene di amine tetra acetic acid
ELISA	Enzyme linked Immunosorbent assay
I-ELISA	Indirect Enzyme linked Immunosorbent assay
Is711	Brucella species gene
MRT	Milk ring test
NCBI	National Center for Biotechnology Information
OIE	Office international des epizooties
PCR	Polymerase chain reaction
RT-PCR	Real time polymerase chain reaction
RBPT	Rose Bengal plate test
RBT	Rose Bengal test
SAT	Serum Agglutination Test
TIVSS	Type 4 secretion system

TBE	Tris Borate EDTA
TSA	Trypticase soya agar
ure	Urease enzyme gene
virB	Transcriptional regulator gene
vjbR	Quorum sensing related Transcriptional regulator gene
VSVRI	Veterinary serum and vaccine research institute
w/v	Weight per volume
ZnuA	Zinc uptake gene

5-Summary

A total of 200 samples of raw milk (100 from El-Santa city, Gharbia governorate, 100 from Sidi_Salem city, Kafer El-Sheikh governorate) were collected from milk shops throughout one year from February 2016 to February 2017.

Sample divided into 3 subsamples. The first 10 ml for milk ring test (MRT), the second 20 ml for bacteriological examination while the third one 10 ml for real time polymerase chain reaction (PCR). Milk samples used for MRT and bacteriological examination were stored at 4°C while milk samples used for PCR assay stored at -20°C till be examined.

The obtained results could be summarized as the following:

1. Milk Ring Test (MRT)

MRT was conducted at *brucella* lab, AHRI, Dokki on 200 milk samples. Incidence of *brucella* in milk samples by MRT was 7.0% and 8.0% in El-Santa and Sidi_Salem respectively in summer and winter seasons with a total positive percent 15% and with 56% sensitivity and 96% specificity.

2. Bacteriological examination

2.1. Direct examination of colonies

By culturing on *brucella* specific media suspected brucella colonies appeared on 5 culture agar plates showed pale honey color. Incidence of *brucella* in milk samples by culture method was 1.0% in El-Santa city and 1.5% in Sidi_Salem city with 12% sensitivity and 100% specificity.

2.2. Microscopic examination

Smears were made from suspected growths and stained with Gram's stain. The *brucella* organisms appear as Gram negative coccobacilli with Gram's stain.

2.3. Biochemical tests for identification of brucella species

All isolated bacteria were positive urease test and catalase test while they were negative for H_2S production test and CO_2 requirements so they were identified as *brucella melitensis*. The results showed high frequency of *brucella melitensis*.

3. Detection of brucella by Real time PCR from milk samples

RT-PCR assay was conducted to confirm the presence of Genusspecific *L-glutamine 2-deoxy scylloinosose amino transferase gene*, PCR amplified *brucella* specific DNA extracted from 200 milk samples and showed 43 samples were positive. Assays were performed in three runs in duplicate. Cycle threshold (CT) values below 40 cycles were interpreted as positive. Incidence of *brucella* in milk samples by RT-PCR was 10.5% and 11% in El-Santa and Sidi_Salem respectively in summer and winter seasons with a total percent 21.5%.

4. Detection of virulence genes (*Ure*, *bvfA* and *virB* genes) in DNA extracted from milk and *brucella* isolates by conventional PCR

Virulence genes were detected in DNA extracted from 43 milk samples and 5 culture plates as well. The *ure*, *bvfA* and *virB* genes were amplified at 2100bp, 1282bp and 881 bp respectively, Of 43 positive milk samples, 38 (88.0%) samples had *Ure* genes, 34 (79.0%) samples had *bvfA* genes and 32 (74.0%) samples had *virB* genes. Detection of virulence genes

(*Ure* gene, *bvfA* and *virB* genes) in DNA extracted from isolates confirmed that *brucella* species isolated from milk samples were mainly *brucella melitensis*.