<u>Subject</u>	<u>Page</u>
• <u>Acknowledgments</u>	Ι
• <u>List of Tables</u>	III
• List of Figures	IV
• List of Abbreviations	VII
<u>1-INTRODUCTION</u>	
1.1-Background	1-3
1.2-Objectives	4
<u>2-LITERATURE REVIEW:</u>	
2.1-Avian Influenza Overview	5
2.1.1-Historic emergence of AI	5
2.1.2-The prevalence of AI around the world	7
2.1.3-The prevalence of AI in Egypt	10
2.1.4-Public health importance of AIVs	15
2.1.5-Economic implications of AI	19
2.2-Etiology	21
 2.2.1.1-Influenza A virus Classification 	21
 2.2.1.2-Influenza A virus Subtypes and host Range 	23
✤ 2.2.1.3-Nomenclature	24

Contents

✤ 2.2.1.4-Morphology	25
 2.2.1.5-Influenza A virus structure 	25
2.2.1.6-TheevolutionofAIVs	28
2.2.1.7-Virus stability	33
✤ 2.2.1.8-Pathotypes	34
 2.2.1.9-Molecular Determinants of Pathogenecity for Avian Influenza Viruses 	35
✤ 2.2.1.10-Propagation	40
2.2.1.11-Influenza A virus Replication Cycle	40
2.3-Ecology of Avian Influenza	
2.3.1-Cinical signs	43
2.4-Gross lesions	50
2.5-Sample selection and storage	54
2.6-Current methods of influenza virus detection	56
2.7-Viral mutation and its effect on detection methods	64
2.8-Prevention and Control	65
✤ 2.8.1-Biosecurity	66
✤ 2.8.2-Diagnostic and Surveillance	67
2.8.3-Elimination of infected poultry	68
 2.8.4-Decreasing host susceptibility 	69

<u>3-MATERIALS AND METHODS:</u>

3.1-Sample collection	75
3.2- Direct rapid detection of avian influenza virus antigen	77
3.4-Avian influenza virus (AIV) detection by Real Time Reverse	82
Transcriptase-PCR (rRT-PCR) utilizing Single Tube Reaction	
3.5-Genetic characterization of H5 gene for 5 isolated H5 strains	
3.5.1-Propagation of rRT-PCR positive samples of AIV by inoculation of	88
embryonated chicken eggs (ECE)	
3.6-Haemagglutinin gene sequencing	91
3.7-Sequence and phylogenetic analyses	104
<u>4-RESULTS :</u>	
4.1- Clinical Picture	106
4.2- Results of rapid Avian influenza A antigen detection strips	114
4.3-Detection of avian influenza virus (AIV) by Real Time Rever	115
Transcriptase – PCR (rRT-PCR) utilizing single tube reaction	
4.4-Molecular characterization of the isolated AIV strains	117
4.5- Haemagglutination (HA) test	120
4.6- Haemagglutinin gene sequencing	121
4.6.2-Genomic Sequence analysis for HA gene (H5)	123
<u>5-DISCUSSION</u>	151
<u>6- SUMMARY</u>	167
<u>7-CONCLUSION</u>	170
<u>8-REFERENCES</u>	172
9-ARABIC SUMMARY	1

List of Tables

Table No.	Title	Page No.			
	Review				
1	Number of confirmed H5N1 outbreaks in different poultry species and sectors in the period 2006-2015				
	Materials and Methods				
2	Components of PBS	76			
3	Antibiotics and antimycotics solutions for 1 liter PBS	76			
4	The oligonucleotide Primer sequences for partial amplification of HA gene for AIV H5 isolation by rPT PCP	86			
	amplification of TIA gene for ATV-115 isolation by IKT-1 CK				
5	Types and sequences of oligonucleotide probes for rRT-PCR	86			
6	Reaction components for one-step rRT- PCR	87			
7	The thermal profile for amplification of part of H5 gene for88AIV-H5V by rRT-PCR88				
8	The oligonucleotide Primers for amplification of part of H59gene of AIV-H5 by RT-PCR9				
9	Composition of Reverse-Transcription Master Mix94				
10	Composition of reaction mix for Long-Range PCR 96				
11	Thermal profile of standard two step RT-PCR	97			
12	BigDye Terminator v3.1 Cycle Sequencing Kit Protocol				
13	Thermal conditions for sequencing reaction102				
	Results				
14	The results of both rapid antigen detection kit and rRT-PCR.	117			
15-21	Nucleotide Similarity (%) between the isolated strains and	131-137			
	previously characterized Egyptian H5N1 AIV isolates.				
22	Nucleotide similarity (%) of HA gene of the isolated strains	138			
	with some of vaccinal strains.				

<u>List of figures</u>

Fig. No.	Title	Page. No.
	literature Review	
1	Schematic diagram of the structure of the influenza A virus	28
2	Schematic diagram of the replication cycle of influenza A virus	43
	Results	
3	Clinical signs appear on chickens and turkeys due to AIV infection (A-G)	107-110
4	Post-mortem lesions (A-G)	111-113
5	Positive and negative results of rapid AIV antigen test kit	114
6	Schematic view of an amplification plot in rRT- PCR	115
7	Results of H5 rRT-PCR	116
8	Results of H5 rRT-PCR	116
9	Results of H5 rRT-PCR	117
10	H5 AIV propagation in ECEs (A-F)	118-120
11	results of rapid slide haemagglutination test	120
12	Result of plate HA test	121
13	Agarose gel electrophoresis of RT-PCR amplified product of HA gene of H5 AIV	122
14	Purified samples (A, b, D, F) respectively	122
15-19	Regions of nucleotide sequence used for	126-130
	phylogenetic analysis and electropherogram data	
	obtained from partial sequencing of HA gene of 5	
	isolates	
20	Deduced amino acid sequence of the cleavage site	138
	of the HA gene of the obtained H5 isolate (A-	
	Chicken-Egypt-Assiut1-2017 H5)	

21	Deduced amino acid sequence of the cleavage site	139		
	of the HA gene of the obtained H5 isolate (A-			
	Chicken-Egypt-Assiut2-2017 H5)			
22	Deduced amino acid sequence of the cleavage site			
	of the HA gene of the obtained H5 isolate (A-			
	Chicken-Egypt-Assiut3-2017 H5)			
23	Deduced amino acid sequence of the cleavage site	140		
	of the HA gene of the obtained H5 isolate (A-			
	Chicken-Egypt-Assiut4-2017 H5)			
24	Deduced amino acid sequence of the cleavage site	140		
	of the HA gene of the obtained H5 isolate (A-			
	Chicken-Egypt-Assiut5-2017 H5)			
25	Phylogenetic tree for HA gene of the H5 isolate	141		
	compared with 2017 Egyptian H5N1 AIV strains			
26	Phylogenetic tree for HA gene of the H5 isolate	142		
	compared with 2015 Egyptian H5N1 AIV strains			
27	Phylogenetic tree for HA gene of the H5 isolate	143		
	compared with 2014 Egyptian H5N1 AIV strains			
28	Phylogenetic tree for HA gene of the H5 isolate	143		
	compared with 2016 Egyptian H5N1 AIV			
29	Phylogenetic tree for HA gene of the H5 isolate	144		
	compared with 2012 Egyptian H5N1 AIV strains			
30	146 Phylogenetic tree for HA gene of the H5	144		
	isolate compared with 2013 Egyptian H5N1 AIV			
	strains			
31	Phylogenetic tree for HA gene of the H5 isolate	145		
	compared with 2011 Egyptian H5N1 AIV strains			
1				

32	Phylogenetic tree for HA gene of the H5 isolate	145
	compared with some vaccinal strains	
33	Clade classification of H5 isolate (A-Chicken-	146
	Egypt-Assiut1-2017 H5)	
34	Clade classification of H5 isolate (A-Chicken-	147
	Egypt-Assiut2-2017 H5)	
35	Clade classification of H5 isolate (A-Chicken-	148
	Egypt-Assiut3-2017 H5)	
36	Clade classification of H5 isolate (A-Chicken-	149
	Egypt-Assiut4-2017 H5)	
37	Clade classification of H5 isolate (A-Chicken-	150
	Egypt-Assiut5-2017 H5)	

List of Abbreviations

A.A	Amino Acids	
Ag	Antigen	
AGPT	Agar gel precipitation test	
AI	Avian influenza	
AIV	Avian influenza virus	
bp	Base pair	
BLAST	Basic Local Alignment Search Tool	
Cat#	Catalogue number	
CDC	Centers for Disease Control	
cDNA	Complementary Deoxyribo Nucleic acid	
C&D	Cleaning & Disinfection	
CLEVB	Central Laboratory for Evaluation of Veterinary Biologicals	
ст	Cycle Threshold	
DDW	double distilled water	
ECE	Embryonated chicken egg	
EID	Egg Infectious Dose	
ELISA	Enzyme Linked Immunosorbent assay	
EMPRES	Emergency Prevention System for Animal Health	
FAO	Food and Agriculture Organization	
G	Gram	
GLEWS	The Global Early Warning System	
GOVS	General Organisation of Veterinary Services	
НА	Haemagglutinin	
н	Haemagglutination Inhibition	
НРАІ	Highly Pathogenic Avian Influenza	
HPNAI	Highly Pathogenic Notifiable Avian Influenza	
HAU	Haemagglutination unites	
IFT	Immunofluorescence test	
IFN	Interferon	

IRD	Influenza Research Database	
LBMs	Live Bird Markets	
LPAI	Low Pathogenic Avian Influenza	
LPNAI	Low Pathogenic Notifiable Avian Influenza	
М	Matrix protein	
Mg/ml	Milligram/ milliliter	
μΙ	Microliters	
MID	Minimum Infectious Dose	
MEGA	Molecular Evolutionary Genetics Analysis	
mRNA	Messenger RNA	
NA	Neuraminidase	
NCBI	National Center For Biotechnology Information	
NP	Nucleoprotein	
NS	Non-Structural protein	
NDV	New Castle disease virus	
OIE	Office International des Epizooties	
РА	Polymerase acidic	
РВ	Polymerase basic	
PBGS	Phosphate Buffered Gelatin Saline	
PBS	Phosphate Buffer Saline	
Pcs	Proteolytic Cleavage site	
RECP	Restriction Enzyme Cleavage Pattern	
RNAs	Ribonucleic acids	
RNP	Ribo-Nucleoprotein	
rRT-PCR	Real time reverse transcription polymerase chain reaction	
rpm	Round per minute	
RT	Room Temperature	
RT-PCR	Reverse Transcription – Polymerase Chain Reaction	
Sec	Second	
SPF	Specific Pathogen Free	
TCID	Tissue Culture Infectious Dose	
VI	Viral Isolation	

VNT	Viral Neutralization Test	
WHO	World Health Organization	
Amino Acid	Single	e/Three Letter Amino Acid Code
Alanine	Α	Ala
Arginine	R	Arg
Asparagine	Ν	Asn
Aspartic Acid	D	Asp
Glutamine	Q	Gln
Glutamic Acid	E	Glu
Glycine	G	Gly
Isoleucine	I	lle
Leucine	L	Leu
Lycine	К	Lys
Methionine	М	Met
Phenylalanine	F	Phe
Proline	Р	Pro
Serine	S	Ser
Threonine	Th	Thr
Tryptophan	Т	Тгр
Valine	V	Val

6. Summary

Avian influenza (AI) represents one of the greatest concerns for public health that has emerged from the animal reservoir in recent times. AI, in its highly pathogenic form (HPAI-H5N1) has disseminated widely across Asia, Europe, and Africa, infecting a wide range of domestic and wild avian species and sporadically infecting humans and other mammals since its emergence in 1996 in Guangdong, China.

This thesis aimed to study the molecular characteristics of AIVs in gallinaceous birds in Upper Egypt during the year of 2014 and 2015. A total no. of 50 tracheal swab samples were collected from gallinaceous birds (chickens and turkeys) from the backyard and farms (which had a history of respiratory tract affections and high mortality rate. The collected swabs were tested with avian influenza rapid antigen test kit which is a chromatographic immunoassay for rapid detection or typing of avian influenza virus. Among 50 examined samples we had 8 positive ones with 16% positive rate .

The collected swab samples were examined with Real Time Reverse Transcriptase-PCR (rRT-PCR) technique for molecular subtyping using specific primer and probe designed for H5. rRT-PCR reactions were carried out by using Qiagen one step rRT-PCR kit with a certain PCR condition and results revealed that 48/50 were positive for H5 subtype (34 chicken samples and 14 turkey samples) (96% positive rate).

Virus isolation was done by inoculation of embryonated chicken eggs (9-11) day via allantoic sac route; the harvested allantoic fluid collected from dead embryos or at the end of (2-5) days post inoculation was tested by rapid and slow haemagglutination tests. Haemorrhages on the allantoic sac, severe embryonic congestion and haemorraghic and congested

chorioallantoic membrane were observed. The allantoic fluid was positive for rapid slide HA test (sandy appearance due to RBCs aggregates). H5 positive samples by rapid HA were undego further examination by micro haemagglutination test where the titer ranged from 1:64 to 1:256 (HAU varied from log_26-8) according to the concentration of the virus in the collected allantoic fluid.

Molecular characterization of the virus was done by performance of two step RT-PCR for the extracted viral RNA. PCR amplification and sequencing were performed using degenerative primers for obtaining 545bp. Samples subjected to two step RT-PCR gave the desired PCR product. Gel extraction was done for further purification.

The purified PCR product of 5isolates were selected for partial haemagglutinin gene sequencing and phylogenetic analysis.

The nucleotide sequence analysis revealed that our isolates showed greatest nucleotide identities with 2017 Egyptian H5N1 AIV isolates which ranged from 95.8 to 98.6 % while the homology ranged from 93.8 to 98.2 % with 2015, from 93.1 to 97.6 % with 2014, from 86.4 to 97.4% with 2016, from 43.1-96.5% with 2013, 94.3 to 96% with 2012 and 29.4-41.7% with 2011 respectively.

Nucleotide analysis of (A-Chicken-Egypt-Assiut2-2017 H5) strain revealed that this strain was far from the previously characterized Egyptian H5N1 AIV isolates which ranged from 46.2 to 48.1% with 2015, from 47.1 to 47.9% with 2017, from 45 to 47.5% with 2014, from 44.4 to 47.3% with 2016, from 45.4 to 46.7% with 2012, from 36.5 to 41% with 2013 and from 28.9 to 34.4% with 2011.

Comparing the HA gene of the isolates with the HA gene of some vaccinal strains commonly used in Egypt (A/Duck/Anhui/1/06, A/duck/Potsdam/1402/86, A/chicken/Mexico/232/94); the analysis

Summary

showed that the examined isolates were genetically distant from the vaccinal strains commonly used in Egypt which is lowest with A/chicken/Mexico/232/94 vaccinal strains in a percentage ranged from 76.8 to77.3% with four of our isolates and in a percentage of 44.6% with (A-Chicken-Egypt-Assiut2-2017 H5) Isolate that was the most distant.

The analysis results of the deduced amino acids of the haemagglutinin (HA) gene cleavage site for the obtained H5 sequences showed that all the isolates had QRERRKKRG motif at the (PCS) confirming the highly pathogenic nature of the H5 isolates.

Phylogenetic analysis based on the HA partial nucleotide sequence of the isolates showed that four of our isolated strains Chicken-Egypt-Assiut1-2017 H5), (A-Chicken-Egypt-Assiut3-2017 H5), (A-Chicken-Egypt-Assiut4-2017 H5), (A-Chicken-Egypt-Assiut5-2017 H5) were clustered with the endemic subclade 2.2.1.2 and only one isolate (A-Chicken-Egypt-Assiut2-2017 H5) was clustered with distinct subclade 2.5, which resemble to (DQ992778/A/goose/ Shantou/239/2006/H5N1/2.5) and (DQ997276/A/ goose/Jilin/hb/ 2003/ H5N1/2.5) that belong to subclade 2.5.

Keywords: avian influenza virus; Real Time Reverse Transcriptase-PCR; partial haemagglutinin sequencing; Nucleotide analysis; phylogenetic analysis.

7. Conclusion

The results of this study concluded that:

- Avian influenza virus was responsible for significant losses in poultry industry and potential zoonotic importance.
- Subtyping of isolates occurred via rRT-PCR with the use of specific primer and probe indicate the presence of H5 subtype of AIV in the area of study.
- Avian influenza virus led to pathological lesions in embryonated chicken eggs after allantoic sac route inoculation.
- Our isolates showed the highest similarity percentages were with 2017, 2015, 2014, 2016, 2013, 2012 Egyptian H5N1 AIV isolates respectively and the lowest homology was with 2011, which confirm that the AIVs continue to mutate and rapidly evolve over time.
- The analysis results of the deduced amino acids of the haemagglutinin (HA) gene cleavage site for the obtained H5 sequences showed that all the five isolates harbored highly pathogenic characteristics such as multiple basic amino acids at the HA polybasic cleavage site (PCS) (QRERRRKKRG) motif.
- Four of our isolated strains A-Chicken-Egypt-Assiut1-2017 H5), (A-Chicken-Egypt-Assiut3-2017 H5), (A-Chicken-Egypt-Assiut3-2017 H5) were clustered with the endemic subclade 2.2.1.2 and only one isolate (A-Chicken-Egypt-Assiut2-2017 H5) was clustered with distinct subclade 2.5, and this isolate was close to (DQ992778/A/goose/Shantou/239/2006/H5N1/2.5) and (DQ997276/A/goose/Jilin/hb/ 2003/ H5N1/2.5) that belong to subclade 2.5.

- The HA gene of the examined H5 isolates especially (A-Chicken-Egypt-Assiut2-2017 H5) isolate were genetically distant from the vaccinal strains commonly used in Egypt which was 88.9 to 89.4% with A/Duck/Anhui/1/06 strain (the Chinese re-assorted vaccine, inactivated Re-5/H5N1) with four of our isolates, in a percentage of 44.8% with (A-Chicken-Egypt-Assiut2-2017 H5) isolate and was lowest with A/chicken/Mexico/232/94 vaccinal strain (Mexico H5N2 AI vaccine) in a percentage ranged from 76.8 to77.3% with four of our isolates and in a percentage of 44.6% with (A-Chicken-Egypt-Assiut2-2017 H5) isolate. This may suggest that efficacy of vaccines designed to control these viruses in poultry will reduce. Therefore, it may be necessary to evaluate the effectiveness of the current vaccine used in Egypt against circulating strains.
- Our findings raise the concerns about the role of using influenza vaccines in correlation with the development of antigenic drift in influenza epidemics

Recommendations:

-Molecular studies need to be sustained to identify the viral genetic changes that lead to variations of Influenza viruses in the field.

-Matching vaccine strains to currently circulating strains.

-Maintaining high vaccination coverage.

-The commercial vaccines need to be evaluated annually for evaluation of the vaccine efficacy in the face of antigenic drift.

-Vaccination must be accompanied by other control measures, including strict biosecurity measures, quarantines, controlled depopulation and increased surveillance.