List of contents

Content	Page
1-Introduction	1
2-Review of literature	4
3-Materials and methods	49
4-Results	59
5-Discussion	67
6-Conclusion and recommendations	72
7-Summary	75
8-References	77
9-Arabic summary	-

LIST OF TABLES

No.	Title	Page
100		1 age
	Clinical symptoms of infected susceptible groups to <i>L</i> .	
Ι		37
	monocytogenes infection	
II	Some notified listeriosis outbreaks in different localities.	43
III	Biochemical reactions of Listeria species	53
IV	PCR component used in PCR technique	55
V	Oligonucleotide primers sequences	56
VI	Cycling conditions of different primers during Cpcr	57
1	Prevalence of Listeria spp. isolated from milk and some milk products	59
2	Prevalence of identified Listeria spp. isolates in examined milk and milk products	60
3	Identification of Listeria species using hemolysis test	64
4	Biochemical identification of <i>L.monocytogenes</i> using Microbact	65
5	Results of PCR amplifications of different isolated <i>L</i> .	66
5	<i>monocytogenes</i> strain virulent genes	00

LIST OF Figures

No.	Title	Page
1	Listeria colonies on Oxford agar.	61
2	Listeria colonies on PALCAM agar.	62
3	Listeria colonies on ALOA agar.	62
4	Catalase reaction (foam formation).	63
5	Suger fermentation for <i>L.monocytogenes</i>	63
6	Suger fermentation for <i>L.grayi</i> .	63
7	Motility test for L. monocytogenes .	64
8	Haemolysis test on 5% sheep blood agar	
9	Microbact for L.monocytogenes .	65
	Agarose gel electrophoresis 1% of PCR specific primers for	
10	characterization of Virulence genes (16S rRNA, Inl A, Inl B,	66
	Hly A, Prf A) of L. monocytogenes.	

List of Abbreviations

μg/ml	Microgram/milliliter
ALOA	Agar Listeria Ottaviani and Agosti
BAM	Bacteriological Analytical Manual
CDC	Centers for Disease Control and Prevention
CCPs	Critical Control Points
CFSAN	Center for Food Safety and Applied Nutrition
CAMP	Christie- Atkins Munch Petersone test
CIP	Caseinolytic proteins
FAO	Food Agriculture Organization
FDA	Food and Drug Administration
USFDA	United States Food and Drug Administrations
НАССР	Hazard Analysis Critical Control Point
HBMEC	Human Brain Microvascular Endothelial Cells
ICMSF	International Commission on Microbiological Specification for
	Food microorganisms
IDF	International Dairy Federation
lap	Invasion Associated Protein, gene coding for protein p60.
Inl A	Internalin A gene
Inl B	Internalin B gene.
ISO	International organization for standardization
LLO	Listeriolysin O
L.monocytogenes	Listeria monocytogenes
L.grayi	Listeria grayi
l.ivanovii	Listeria ivanovii
L.innocua	Listeria innocua
L.seeligeri	Listeria seeligeri
L.welshimeri	Listeria welshimeri
MLD	Minimum lethal Dose
MPI	Gene coding for metalloprotease protein

OXA	Oxford agar
PALCAM	Polymyxin B-Acriflavin- lithium Chloride Ceftazidime-Aesculin-
	Mannitol agar base
PCR	Polymerase Chain Reaction
PC-PLC	Phosphatidyl Choline- specific Phospholipase C
PCR-RFLP	Polymerase Chain Reaction-Restriction Fragment Length
	Polymorphism.
PFGE	Pulsed-Field Gel Electrophoresis
PLC A	Gene encodes citrated Phosphatidyl Inositol-specific
	Phospholipase C (PI-PLC)
PLC B	Gene encodes Phosphatidyl Choline Phospholipase C.
PRF A	Positive Regulatory Factor gene
R. equi	Rhodococcus equi
RAPD	Randomly Amplified Polymorphic DNA
RPM	Round Per Minute
SE	Standard Error
S. aureus	Staphylococcus aureus
TSC-YE	Tryptose Sulphate Cycloserine- Yeast Extract
UK	United Kingdom
USA	United States of America
WHO	World Health Organization

7. SUMMARY

Milk and milk products are an excellent media for the growth of numerous microbes especially pathogenic bacteria as listeria, which produces infections to consumer (Listeriosis). Therefore, this study was performed on a total of 280 random samples (40 of each) which were collected from small retails and different supermarkets, street vendors and farmers at Qalubyia Governorate, Egypt, to estimate the prevalence of listeria spp. in raw milk, kareish cheese, domiatti cheese, tallage cheese, fresh cream, soured cream and pasteurized cream with special interest to *L.monocytogenes*, and studying their cultural, biochemical and special reference to some virulence genes. The results of listeria spp. isolation revealed that, 6 out of 280 samples were positive for isolation (2.2%) represented as, one positive sample (0.4%) from raw milk, 2 samples from kareish cheese (0.7%) and Domiatti cheese (0.7%) and one positive sample from pasteurized cream (0.4%).

Listeria spp. failed to be detected in the examined Tallaga cheese, fresh cream and soured cream.

The results of bacteriological examination of examined samples revealed that, a total of 6 (2.2%) isolates of listeria spp. were recovered from 280 samples includes 1 *L.monocytogenes* and 5 *L.grayi*, while *L.monocytogenes* was isolated with an incidence of (2.5%) from raw milk samples only, while, *L. grayi* was isolated with an incidence of (12.5%) from samples of Domiatti cheese 2 (5%), kareish cheese 2 (5%) and one pasteurized cream sample (2.5%).

The results of virulence tests for the isolated *L.monocytogenes* strain showed narrow zone of β -hemolysis on 5% sheep blood agar. Meanwhile, *L. grayi* strain was non-virulent as none of them could produce hemolysis.

The PCR results for *L.monocytogenes* showed that genes (16S rRNA, *inl*A, *inl*B and *hyl*A) were detected in isolated strain. While, *prf* A gene could not be detected. So, the isolated strain was confirmed to be a virulent *L.monocytogenes*.