CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
INTRODUCTION	1
REVIEW OF LITERATURE	3
2.1. Silicon forms and status in soils	3
2.2. Silicon adsorption on soil	7
2.3. Factor affecting silicon transformation in soils	11
2.4. Silicon benefits to plants	12
2.4.1. Silicon and plant biomass	14
2.4.2. Silicon concentration and uptake by plants	16
2.5. Phosphorus availability in soil	17
2.6. Phosphorus and plant growth	19
2.6.1. Phosphorus and plant biomass	19
2.6.2. Phosphorus concentration and uptake by plants	20
2.7. Silicon and phosphorus interaction in soil	21
2.8. Silicon and phosphorus interaction and their effect on plant	
growth	24
2.8.1. Silicon and phosphorus interaction and their effects on	
plant biomass	24
2.8.2. Interactions effects of Si and P on their concentration and	
uptake of it's by plant	24
MATERIALS AND METHODS	26
3.1. Incubation experiments	26
3.1.1. First incubation experiment	26
3.1.2. Second incubation experiment	27
3.2. Adsorption experiments	29
3.2.1. Silicon adsorption experiments	30
3.2.2. Silicon and phosphorus interaction experiments	30

3.3. Cultivation pot experiments	32
3.3.1. Silicon cultivation pot experiment	32
3.3.2. Phosphorus cultivation pot experiment	32
3.3.3. Silicon and phosphorus interaction cultivation pot	
experiment	32
3.4. Statistical analyses	33
RESULTS AND DISCUSSION	34
4.1. Incubation experiments	34
4.1.1. Silicon and phosphorus availability as affected by silicon	
applied rate	34
4.1.1.1. Silicon availability	34
4.1.1.2. Phosphorus availability	35
4.1.2. Silicon and phosphorus interaction in the incubated soil	36
4.1.2.1. Silicon availability as affected by silicon and phosphorus	
application	36
4.1.2.2. Phosphorus availability as affected by silicon and	38
phosphorus application	
4.2. Adsorption Experiments	39
4.2.1. Silicon adsorption from the concerned solution contained	
different concentration of silicon	40
4.2.1.1. Silicon adsorption onto soil incubated with different	
silicon	40
4212 Silicon adaption onto coil incubated with different	
4.2.1.2. Silicon adsorption onto soil incubated with different	17
silicon and phosphorus concentrations	47
4.2.2. Silicon adsorption from the concerned solution contained	
different silicon and phosphorus concentrations onto the	
incubated soil	57
4.2.2.1 Silicon adsorption onto soil incubated with different	
silicon concentrations	57
4.2.2.2. Silicon adsorption onto soil incubated with different	
silicon and phosphorus concentrations	63

4.3. Cultivations pot experiments	72
4.3.1. Status of silicon and phosphorus in soil	72
4.3.1.1. Silicon availability as affected by silicon application to	72
4.3.1.2. Phosphorus availability as affected by Phosphorus application to soil	73
4.3.1.3. Silicon and phosphorus availability as affected by silicon	
and phosphorus interaction to soil	74
4.3.2. Plant growth	76
4.3.2.1. Silicon and phosphorus application effects on wheat	
biomass production	76
4.3.2.1.1. Silicon application effects	76
4.3.2.1.2. Phosphorus application effects	78
4.3.2.1.3. Silicon and phosphorus interactions effects	79
4.3.3. Silicon and phosphorus status in the grown plants	81
4.3.3.1. Silicon application effects on silicon status in plants	81
4.3.3.2. Phosphorus application effects on Phosphorus status in	00
plants	83
4.3.3.3. Silicon and phosphorus interaction effects on silicon and	
Phosphorus status in plants	84
SUMMARY	89
RFERENCES	93
ARABIC SUMMARY	

LIST OF TABLES

No.		Page
1	Some physical and chemical properties of the studied soil	27
2	Available silicon as affected by silicon and phosphorus	
	application to incubated soil samples	37
3	Available phosphorus as affected by silicon and	
	phosphorus application to incubated soil samples	39
4	Freundlich isotherm parameters for adsorption of silicon	l
	onto soil samples incubated with different silicon	47
	concentrations	+/
5	Freundlich isotherm parameters for silicon adsorption onto)
	soil samples incubated with different silicon and	l
	phosphorus concentrations	56
6	Freundlich isotherm parameters for silicon adsorption under	•
	different phosphorus concentration by soil incubated with	l
	different silicon concentrations	62
7	Freundlich isotherm Parameters for silicon adsorption	
	under different phosphorus concentration by soil samples	
	incubated with different silicon and phosphorus	
~	concentrations.	70
8	Available silicon at booting growth stage of wheat plants as	
0	affected by silicon application to soil samples	72
9	Available phosphorus at booting growth stage of wheat	
	plants as affected by phosphorus application to soil	
11	samples.	73
11	Fresh and dry weights of shoots and roots of wheat plants at	
	booting growth stage as affected by silicon application to	
	soil samples	77

12	Fresh and dry weights of shoots and roots of wheat plants	
	at booting growth stage as affected by phosphorus	
	application to soil samples	78
13	Fresh and dry weights of shoots and roots of wheat plants	
	at booting growth stage as affected by silicon and	
	phosphorus application to soil samples	80
14	Concentration and total content of silicon in shoots and	
	roots of wheat plants at booting growth stage as affected by	
	silicon applications to soil samples	81
15	Concentration and total content of phosphorus in shoots and	
	roots of wheat plants at booting growth stage as affected by	
	phosphorus applications to soil samples	83
16	Concentration and total content of silicon in shoots and	
	roots of wheat plants at booting growth stage as affected by	
	silicon and phosphorus applications to soil samples	85
17	Concentration and total content of phosphorus in shoots and	
	roots of wheat plants at booting growth stage as affected by	
	silicon and phosphorus applications to soil samples	86
18	Relationship between silicon and phosphorus concentration	
	in shoots and roots of wheat plant and available Si and P	
	concentration in soil samples	87

LIST OF FIGURES

No.		Page
1	Available silicon as affected by silicon application to soil	
	under incubated condition	35
2	Available phosphorus as affected by silicon application to	
	soil under incubated condition	36
3	Adsorbed silicon as affected by either applied silicon	
	concentration in the concerned solution or applied plus	
	initially available silicon concentration onto soil samples	
	incubated with different silicon concentrations	41
4	Adsorbed silicon as affected by equilibrium silicon	
	concentration in the concerned solution onto soil samples	
	incubated with different silicon concentrations	41
5	Equilibrium silicon concentration as affected by either	
	applied silicon concentration in the concerned solution or	
	applied plus initially available silicon concentration in soil	
	samples incubated with different silicon concentrations	42
6	Langmuir isotherm for silicon adsorption onto soil samples	
	incubated with different silicon concentrations	44
7	Freundlich isotherm for silicon adsorption onto soil samples	
	incubated with different silicon concentrations	45
8	Adsorbed silicon as affected by either applied silicon	
	concentration or applied plus initially available silicon	
	concentration in the concerned solution onto soil samples	
	incubated with different silicon and phosphorus	
	concentrations	48
9	Adsorbed silicon as affected by equilibrium silicon	
	concentration in the concerned solution onto soil samples	
	incubated with different silicon and phosphorus	
	concentrations	50

- 10 Equilibrium silicon concentration as affected by either applied silicon concentration or applied plus initially available silicon concentration in the concerned solution in soil samples incubated with different silicon and phosphorus concentrations......
- 12 Response of silicon adsorption to either applied silicon or applied plus initially available concentration under different phosphorus concentrations in the concerned solution by soil samples incubated with different silicon concentrations...... 58

- 15 Freundlich isotherm for silicon adsorption under different concentration of phosphorus by soils incubated with different silicon concentrations.
 61
- 16 Response of silicon adsorption to either applied silicon or applied plus initially available concentration under different phosphorus concentrations in the concerned solution by soil samples incubated with different silicon and phosphorus concentrations.
- 17 Response of silicon adsorption to equilibrium silicon concentration under different phosphorus concentrations in the concerned solution by soil samples incubated with

64

52

- 18 Response of equilibrium silicon concentration to either applied silicon or applied plus initially available concentration under different phosphorus concentrations in the concerned solution by soil samples incubated with different silicon and phosphorus concentrations..... 67 19 Freundlich isotherm for silicon adsorption under different concentration of phosphorus by soil samples incubated with 69 different silicon and phosphorus concentrations..... 20 Available silicon and phosphorus as affected by silicon and phosphorus application to soil samples at booting growth

ABSTRACT

Heba Yahya Ahmed Saad: Studies of Silicon Behavior in both Soil and Plant Including the Interactions with Phosphorus. Unpublished Ph.D., Thesis, Soils Dept., Fac. Agric., Ain Shams Univ., 2018.

Multi-series incubation experiments followed by short term adsorption experiments and pot experiments were conducted to study the behavior of silicon (Si) and its interactions with phosphorus (P) in a clay soil.

The results declared that the availability of Si increased by increasing of the added amount up to 50mg Si Kg⁻¹, and decreased afterwards. Also, the availability of P increased by increasing the added amount of Si to soil.

Responses of adsorption rate of Si to certain environmental conditions were studied, such conditions being the applied ion concentration in the concerned solution, equilibrium concentration and interaction with P, by applying Freundlich as well as Langmuir isotherm. However, Freundlich isotherm gave good fit with the data than Langmuir isotherm. Hence, investigations were performed through evaluating the responses of ion adsorption to ion concentration in the concerned solution, these studies being carried out through evaluation of both adsorptive capacity (K_f) and the intensity of adsorption or sorption energy constant of Freundlich isotherm model (1/n). Results showed that the amount of adsorbed Si onto soil increased with increasing either the applied or equilibrated Si concentration in all incubated soil samples. Also, silicon adsorption onto soil decreased in the soil which incubated with high than with low Si concentration. As well as, application of P to the soil decreased the amount of adsorbed Si on all incubated soil samples.

The responses of growth, element status at booting growth stage of wheat plant to the applied Si and P together with their interactions were followed. Obtained results showed that silicon and phosphorus were favorable, for plant growth, it increased with increasing Si or P concentration. Increasing the applied Si or P concentration to soil increased the fresh and dry weights of wheat plants at booting growth stage. In general, positive significant responses to the applied Si or P concentrations to soil were found in the status of Si or P in the grown wheat plants. Moreover, the interaction between Si and P applications at booting growth stage of wheat plants generally increased the growth parameters. Such responses were significant for fresh weight and dry weight.

Key words: Silicon, Phosphorus, Incubation, Adsorption, Freundlich isotherm, Wheat, Plant growth.