TABLE OF CONTENTS

1.	INTRODUCTION, RESEARCH PROBLEM, OBJECTIVES	
1.1.	Introduction	1
1.2.	Research problem	2
1.3.	Objectives of the study	7
2.	REVIEW OF LITERATURE	9
2.1.	Introduction	9
2.2.	Air pollution	10
2.2.1.	Definitions of air pollution and air pollutants	10
2.2.2.	Classifications of air pollutants and its sources	10
2.2.3.	Air quality indicators	11
2.2.4.	Air pollution problems in Egypt	14
2.2.5.	Industries Affect human health	14
2.2.6.	Indoor air pollution	16
2.2.6.1	Smoking	16
2.2.6.2.	Biomass and Solid fuel	17
2.2.7.	Air pollution impacts on human health	17
2.2.7.1.	Air pollution and Chest diseases	18
2.2.7.2.	Air pollution and mortality	19
2.3.	Lung diseases	20
2.3.1.	Acquired Lung Disease (caused by Air Pollution)	21
2.3.1.1.	Asthma	21
2.3.1.2.	Chronic Obstructive Pulmonary Disease (COPD)	22
2.3.1.3.	Lung Cancer	23
2.3.2.	Occupational lung diseases	24
2.3.2.1.	Occupational Asthma	24
2.3.2.2.	Mesothelioma	24
2.3.2.3.	Silicosis	25
2.3.2.4.	Asbestosis	25
2.3.2.5.	Sick Building Syndrome	26
2.4.	Nutrition and lung diseases caused by air pollution	26
2.4.1.	The role of antioxidants	27
2.4.1.1.	The role of Vitamin C	29
2.4.1.2.	The role of Glutathione	31
2.4.1.3.	The role of α - Tocopherol (vitamin E)	31
2.4.1.4.	The role of Carotenoids	32
2.4.1.5.	The role of Omega-3	32
3.	MATERIALS AND METHODS	34
3.1.	The field study	34
3.1.1.	Population and sample	34
3.1.2.	The questionnaire design and Measurement methods	34
3.1.3.	Statistical analysis of field study	36
3.2.	Laboratory study	37
3.2.1.	Exposure to cigarettes smoke	37

3.2.1.1.	Tested compounds	37
3.2.2.	Animals and treatments	37
3.2.3.	Experimental design	38
3.2.4.	Relative lungs' weight	40
3.2.5.	Biochemical parameters	40
3.2.5.1.	Blood biochemical parameters	40
3.2.5.2.	Lungs biochemical parameters	40
3.2.6.	Histological examination	41
3.2.7.	Statistical analysis of experiment animals	
4.	RESULTS AND DISCUSSION	42
4.1.	Field study	42
4.1.1.	Some demographic characteristics of the samples	42
4.1.2.	Food patterns of surveyed families	43
4.1.2.1.	Milk and dairy products	43
4.1.2.2.	Fruit and vegetables	44
4.1.2.3.	Meat and fish	46
4.1.2.4.	Bread	48
4.1.2.5.	Hydrogenated fats	49
4.1.2.6.	Salt and salty foods	49
4.1.2.7.	Fast food	50
4.1.2.8.	Herbal drinks	51
4.1.2.9.	Total scores of food patterns	52
4.1.3.	Sources and levels of air pollution at home	53
4.1.4.	Chest diseases prevalence (dependent variable) in target samples	55
4.1.5.	Variation of food patterns between the two samples, correlation and	57
	interpretive relationships between the food patterns and chest	
	diseases prevalence	
4.2.	Laboratory study	58
4.2.1.	Effect of vitamin C and exposure to smoke and their combinations on	58
	Relative Lung / body weight	
4.2.2.	Effect of exposure to cigarette smoke on vitamin C levels in plasma	59
4.2.3.	Effects of vitamin C and smoke exposure on oxidative stress	60
	(TBARS) and reduced glutathione (GSH) levels in plasma and lung	
4.2.4.	Histological results and discussion	63
5.	CONCLUSION AND RECOMMENDATIONS	74
5.1.	Conclusion	74
5.2.	Recommendations	75
	SUMMARY	76
	ABSTRACT	79
	REFERENCES	80
	ARABIC SUMMARY	
	ARABIC ABSTRACT	

LIST OF TABLES

Table	Title	Page
1.1	Sequential readings of environmental monitoring devices in Nag- Hammadi and El-Max in 2014	7
2.1.	Air quality indicators, according to the WHO and the environmental protection law in Egypt	13
2.2.	Health impact and gaseous emissions for some industries	15
2.3.	The carcinogens components in cigarette smoke	16
2.4.	Air pollution impacts on human health and mortality rate	18
2.5.	Silicosis in Egypt in 1989	25
2.6.	Antioxidant metabolite Concentration in human serum and liver tissue	29
2.7.	Foods containing high levels of antioxidant vitamins	29
3.1.	% Content of basal diet	38
3.2.	Minerals and Vitamins mixture composition	38
4.1.	Distribution of samples according to age, educational level and job of housewives	42
4.2.	Distribution of samples according to children and number of family members	43
4.3.	Distribution of samples according to milk and dairy products consumption	44
4.4.	Distribution of samples according to fruit and vegetables consumption	45
4.5.	Distribution of samples according to meat fish consumption	47
4.6.	Distribution of samples according to bread consumption	48
4.7.	Distribution of samples according to hydrogenated fat consumption	49
4.8.	Distribution of samples according to salt and salty food consumption	50
4.9.	Distribution of samples according to fast food consumption	50
4.10.	Distribution of samples according to Herbal drinks consumption	51
4.11.	Distribution of samples according to total degree of food patterns	52
4.12.	Distribution of samples according to sources of air pollution at home	54
4.13.	Distribution of samples according to levels of air pollution at home	55
4.14.	Distribution of families according to the number of patient suffering from chest diseases	55
4.15.	Distribution of patients according to their gender	56
4.16.	Distribution of patients according to their age	56
4.17.	Variation of food patterns and the correlation and interpretive	57
	relationships between independent variables and dependent variable	
4.18.	Effect of vitamin C and exposure to smoke on Relative Lung / body weight	59
4.19.	Effect of exposure to cigarette smoke on vitamin C levels in plasma	59
4.20.	Effects of vitamin C and smoke exposure on some biochemical parameters (TBARS&GSH) in blood and lung	62

LIST OF FIGURES

Figure	Title	Page
1.1.	Levels of air pollution in Alexandria	3
1.2.	Levels of nitrogen dioxide in Alexandria	3
1.3.	Levels of suspended dust in Alexandria	4
1.4.	Levels of sulfur dioxide in Alexandria	4
1.5.	Levels of lead in Alexandria	5
1.6.	Levels of carbon oxide in Alexandria	5
1.7.	Prevalence of chest diseases in Alexandria	6
2.1.	Lung cancer deaths in 2004	18
2.2.	Classification of lung diseases	21
3.1	Experimental design	39
4.1.	Percentage distribution of samples according to Food patterns	53
4.2.	Percentage distribution of families according to the number of patient suffering from chest diseases	55
4.3.	Percentage distribution of families according having patients in Qena	56
4.4.	Percentage distribution of families according having patients in Alexandria	56
4.5.	Effect of vitamin C and exposure to smoke and their combinations on Relative Lung / body weight	59
4.6.	Effect of exposure to cigarette smoke and their combinations on vitamin C levels in mice plasma	60
4.7.	Effects of vitamin C and smoke exposure and their combinations on levels of oxidative stress in mice plasma	61
4.8.	Effects of vitamin C and smoke exposure and their combinations on levels of oxidative stress in mice lungs	61
4.9.	Effects of vitamin C and smoke exposure and their combinations on levels of glutathione reduced in mice plasma	62
4.10	Effects of vitamin C and smoke exposure and their combinations on levels of glutathione reduced in mice lungs	63
4.11.	Light micrograph of control group mice section of lung	66
4.12.	Light micrograph of SMK group mice section of lung, exposure to smoke daily for 12 weeks	67
4.13.	Light micrograph of CBSL group mice section of lung, low dose of vitamin C before exposure to smoke	68
4.14.	Light micrograph of CBSH group mice section of lung, high dose of vitamin C before exposure to smoke	69
4.15.	Light micrograph of CDSL group mice section of lung, low dose of vitamin C during exposure to smoke	70
4.16.	Light micrograph of CDSH group mice section of lung, high dose of vitamin C during exposure to smoke	71
4.17.	Light micrograph of CASL group mice section of lung, low dose of vitamin C after exposure to smoke	72
4.18.	Light micrograph of CASH group mice section of lung, high dose of vitamin C after exposure to smoke	73

LIST OF ABBREVIATIONS

А	: Alveoli
A1AT	: Alpha-1 Antitrypsin or al-antitrypsin
A1PI	: Alpha-1 proteinase inhibitor
AA	: Ascorbic acid
Ad- libitum	: Diet for mice in experiment period
ALA	: α-linolenic acid
BV	: Blood vessel
BW	: Body Weight
CAP	: Concentrated ambient particles
CASH	: Mice group treated by vitamin C high dose after 12 weeks cigarette smoke exposure.
CASL	: Mice group treated by vitamin C low dose after 12 weeks cigarette smoke exposure.
CBSH	: Mice group were given high doses of vitamin C (0.075 mg/gm.BW) for the first two weeks, then stopped and exposed to cigarette smoke till the end of scheduled duration.
CBSL	: Mice group were given low doses of vitamin C (0.015 mg/gm. of body weight) by Oro gastric tube for the first two weeks, then stopped and exposed to cigarette smoke till the end of scheduled duration.
CDSH	: Mice group treated by high dose vitamin C orally during exposure to cigarette smoke for 12 weeks.
CDSL	: Mice group treated by low dose vitamin C orally during exposure to cigarette smoke for 12 weeks.
CONT	: Control group
COPD	: Chronic Obstructive Pulmonary Disease
D	: Dust and dark particles
DHA	: Decosahexaenoic acid
ELF	: Epithelial lining fluid
EPA	: Eicosapentaenoic acid
FEV1	: The forced expiratory volume in one second
GR	: Glutathione reductase activity
GSH	: Reduced glutathione
GSSG	: Glutathione oxidation
GSTs	: Glutathione S-transferases

GSTs	: Glutathione S-transferases
H&E	: Hematoxylin and Eosin stain
Ι	: Pheunocyte type I
IAS	: Inter-alveolar septum
IAS	: Inter-alveolar septum
II	: Pheunocyte type II
MMP	: Metalloproteinase
Ns	: Neutrophil
P1	: Type I squamous epithelium.
P2	: Type II pneumocystis
PM	: Particulate Matters
PM10	: Particulate Matters less than 10 micron in diameter
PUFA	: Polyunsaturated fatty acids
Rb	: Respiratory bronchiole
RBCs	: Red Blood Cells
ROS	: Reactive oxygen species
SBS	: Sick building syndrome
SC	: Single columnar lining epithelium
SMK	: Mice group were exposure to cigarette smoke for scheduled duration (12 weeks)
TBARS	: Oxidative stress – Free radicals determination
TRAP	: Traffic-related air pollution
TSP	: Total suspended particulate matter
TSP	: Total Suspended particles
VCH	: Mice group were given high doses of vitamin C by Oro gastric tube for two weeks
VCL	: Mice group were given low doses of vitamin C by Oro gastric tube for two weeks
VIT C	: Vitamin C
VOCs	: Volatile Organic Compounds

ABSTRACT

The research aims to evaluate the food patterns of two samples in Alexandria and Qena, and its relation to chest disease risks due to air pollution, this was achieved by conducting a field and a laboratory studies.

The field study was done on a random sample consisted of 400 families have been taken from Alexandria (Wadi Elkamar district at Alexandria governorate), and Hiw at Naje Hammadi – Qena governorate.

The required data was collected by using an especially design questionnaire, which has four parts include demographic characteristics of the family members, food consumption patterns, the sources of indoors and outdoors air pollution as independent variables, and the prevalence of chest diseases among the family members as a dependent variable.

The laboratory study was done on male mice (6 weeks age) was done to study the effect of exposure to cigarette smoke for 12 weeks on lung health in mice through some biochemical parameters in blood and lung, as well as effect of low and high doses of vitamin C before, during and after exposure to smoke.

The results show that (47%) of the studied families have patients with chest diseases. One fourth of patients (25%) are children under 16 years old. The smokers in the families consists (51.5%) and (40%) in Alexandria and Qena respectively. The results reveal that (62%) of families need to modify their food patterns.

Statistical analysis illustrate a significant negative relation was found between having healthy food patterns and prevalence of chest diseases. Healthy food patterns helps in decrease the prevalence of chest diseases by (17.1%).

Results of the laboratory study revealed that exposure to smoke increased the relative lung weight by 205%, decreased in vitamin C levels in plasma by 31.6%, increased TBARS, and decreased GSH in plasma and lung, while treatment with high doses of vitamin C before and during smoke exposure showed improvement in biochemical and histological examinations.