CONTENTS

Title	Page
Introduction	1
Aim of Work	3
Literature Review	
1. Beekeeping and Honey bee races in Egypt.	5
2. Honey bee and their castes.	6
3. Pathogens threaten Honey bee health:	8
3.1. American foulbrood disease.	9
3.1.1. Pathogen of American foulbrood disease.	10
3.1.2. Symptoms and diagnosis of American foulbrood	
disease.	
3.1.3. Mode of <i>P. larvae</i> pathogenicity.	
3.1.4. Availability of American foulbrood pathogen.	
3.1.5. Controlling of American foulbrood disease.	
3.2. Chalkbrood disease.	
3.2.1. Pathogen of chalkbrood disease.	
3.2.2. Symptoms and diagnosis chalkbrood disease.	21
3.2.3. Mode of <i>Ascosphaera apis</i> pathogenicity.	23
3.2.4. Availability of chalkbrood pathogen.	25
3.2.5. Controlling of chalkbrood disease.	26
4. Microbial flora of Honey bee alimentary tract.	29
5. Incidence and role of Lactic acid bacteria as probiotic	
in Honey bee.	35
Material and Methods	41
1. Isolation and purification of bacterial and fungal isolates:	41

1.1. Media for isolation and purification of LAB.	
1.2. Media for isolation and purification of	
Enterobacteriaceae	42
1.3. Media for Isolation and purification of fungal	43
isolates.	
2. Screening antagonistic activity of bacterial and fungal	
isolates.	44
2.1. Medium for screening antagonistic activity against	
P. larvae.	44
2.2. Medium for screening antagonistic activity against	
Ascosphaera apis.	45
3. Identification of bacterial and fungal isolates:	45
3.1. Identification of bacterial isolates.	45
3.1.1. Morphological Identification.	
3.1.2. Biochemical tests used for identification of	
bacterial isolates.	47
3.2. Identification of fungal isolates.	54
4 Evaluation of Antagonistic activities of bacterial and	51
fungal isolates:	51
Tungai isolates.	54
5. Determination of Minimum Inhibitory Concentrations	
and Minimum Bactericidal Concentrations:	55
5.1. Preparation of Cell-Free Supernatant (CFS).	
5.1.2.Determination of Minimum Inhibitory	
concentration (MIC) and Minimum Bactericidal	
concentration (MBC).	56
6. Characterization of antibacterial and antifungal bioactive	

metabolites.	
6.1. Extraction, isolation, purification and identification	
of antimicrobial metabolites of isolate 90:	56
6.1.1. Extraction of bioactive compounds.	56
6.1.1.1. Preparation of Cell-Free Supernatant.	56
6.1.1.2. Preparation of Cell-Free Supernatant (CFS).	57
6.1.1.3. Liquid-liquid phase extraction of bioactive	
metabolites from CFSs.	57
6.1.2. Antimicrobial assay of extracted fractions:	58
6.1.3. Purification of bioactive compounds.	58
6.1.4. Antimicrobial assay of bioactive compounds.	59
6.1.5. Identification of the antibacterial compounds.	59
6.2. Extraction, and identification of antimicrobial	
metabolites of isolate No. 60:	
6.2.1. Extraction of bioactive metabolites:	
6.2.1.1. Preparation of Cell-Free Supernatant (CFS).	60
6.2.1.2. Liquid- liquid phase extraction of bioactive	
metabolites from CFSs.	
6.2.2. Identification of the antifungal compounds.	
7. DNA manipulation and 16s rDNA gene sequencing	
fingerprint of isolates No. 90 and 60.	
7.1. DNA extraction of the most potent antagonistic	
bacteria (isolates No. 90 and 60):	
7.2. PCR procedures by using Maxima Hot Start PCR	
Master Mix (Thermo K1051).	62
7.3. PCR clean up and PCR product using GeneJET TM	
PCR Purification Kit (Thermo K0701)	64
8. In <i>vivo</i> therapeutic effect of <i>Fructobacillus fructosus</i>	

and Lactobacillus plantarum CFSs.		
9. Statistical analysis.		
Results.	70	
1. Gut Microbial count of 5 th instar larvae and forager		
honey bees.		
1.1. Microbial count of apiary A samples (Zagazig).	70	
1.2. Gut Microbial count of Apiary B samples (San El		
Hager).	75	
1.3. Gut Microbial counts of Apiary C samples (El Tal		
El kabier).	79	
2. Effect and Correlation of Different variables honey		
bee gut microbial loads.		
3. Distribution of Antagonistic activities of endogenous		
microbial isolates against Pathogens of American		
foulbrood and Chalkbrood Diseases.	87	
4. Identification and Frequency of occurrence of different		
bacterial and fungal isolates among total microbial		
isolates.	94	
4.1. Frequency of occurrence of microbial isolates.		
4.2. Identification of Bacterial isolates.		
4.3. Identification of fungal isolates.	100	
5. Molecular identification of the most potent antagonistic		
bacteria.	109	

6. Identification of active metabolites of <i>Fructobacillus</i>	
Fructosus and Lactobacillus plantarum:	112
6.1. Identification of active metabolites of <i>Fructobacillus</i>	
Fructosus	112
6.1.1. Detection of bioactive fractions.	112
6.2. Identification of active metabolites of <i>Lactobacillus</i>	
plantarum CFS.	118
7. Determination of minimum inhibitory concentration	
(MIC) and minimum bacteriocidal concentration (MBC):	123
8. In <i>vivo</i> therapeutic effect of <i>Fructobacillus fructosus</i>	
and Lactobacillus plantarum CFSs.	125
8.1. Therapeutic effect of Fructobacillus fructosus	
against P. larvae.	125
8.2. Therapeutic effect of Lactobacillus plantarum	
against Ascosphaera apis.	128
Discussion	
Summary and Conclusion	
Reference	158
Arabic Summary	1

List of Tables

No.	Title	Page No.
1	Maxima® Hot Start PCR Master components.	63
2	PCR thermal cycling conditions.	64
3	Daily amounts and composition for artificial feeding	
	according to the age of worker larvae in percentage of	
	weight.	69
4	Gut Microbial count of honey bee 5 th instar larvae and	
	Foragers of Apiary A during different blooming	
	seasons.	73
5	Gut Microbial count of honey bee 5 th instar larvae and	
	Foragers of Apiary B during different blooming	
	seasons.	77
6	Gut Microbial count of honey bee 5 th instar larvae and	
	Foragers of Apiary C during different blooming	
	seasons.	81
7	Effect of Correlation between cultural medium,	
	geographical and blooming seasons on gut microbial	
	counts.	85
8	Distribution of Antagonistic activities of endogenous	
	microbial isolates against honey bee Pathogens of	
	American foulbrood and Chalkbrood Diseases.	90
9	Frequency of occurrence of different bacterial and	
	fungal isolates among total isolates	95

No.	Title	Page No.
10	Morphological and biochemical characters of bacterial	
	isolates recovered on Nut. and Mac	98
11	Distribution percentage of fungal isolates	103
12	Antagonistic activities of identified fungi against	
	honey bee pathogens; P. larvae and Ascosphaera apis.	104
13	Common name and chemical structure of bioactive	
	constituents of EA extract of Fructobacillus fructosus	
	CFS.	115
14	Common name and chemical structure of bioactive	
	constituents of EA extract of Lactobacillus plantarum	
	CFS.	119
15	MIC and MBC of Fructobacillus fructosus and	
	Lactobacillus plantarum against honey bee pathogens.	124
16	Effect of CFS of Fructobacillus fructosus on survival	
	rates percentage of larvae infected with P. Larvae	
	spores.	126
17	Effect of CFS of Lactobacillus plantarum on survival	
	rates percentage of larvae infected with Ascosphaera	
	apis spores.	129

List of Figures

No.	Title	Page No.
1	Gut Microbial count of honey bee 5 th instar larvae	
	and Foragers of Apiary A (Zagazig).	74
2	Gut Microbial count of honey bee 5 th instar larvae	
	and Foragers of Apiary B (San El Hager).	78
3	Gut Microbial count of honey bee 5 th instar larvae	
	and Foragers of Apiary C (El Tal El kabier).	82
4	Effect of cultural medium on both larval and	
	foragers gut microbial count.	86
5	Effect of geographical location on both larval and	
	foragers gut microbial count.	86
6	Effect of honey flow season on both larval and	
	foragers gut microbial count.	87
7	Distribution of Antagonistic activities of endogenous	
	lactic acid bacterial isolates against Pathogens,	
	Paenibacillus larvae and Ascosphaera apis.	91
8	Distribution of Antagonistic activities of endogenous	
	honey bee fungal isolates against Pathogens;	
	Paenibacillus larvae and Ascosphaera apis.	91
9	Antagonistic activities of some fungal and bacterial	
	isolates; Photo (A:C) against P. larvae; (A) A.	
	nidulans; (B,1) P. corylophilum, (C,1): A. terreus,	
	and (D): A. terreus against Ascosphaera apis, (E &	
	F) bacterial isolates 95, 34, 20 and 65 against	
	Ascosphaera apis.	92

List of Figures

No.	Title	Page No.
10	Photo (A); antagonistic activities of two LAB	
	isolates No.90 & isolate No. 34 against P. larvae.	
	Photo (B); antagonistic activity of isolate No. 60	
	against Ascosphaera apis.	93
11	Distribution of different microbial isolates.	96
12	Photo A; two different colonies of LAB isolates, B;	
	Staph isolate on blood agar, C; green pigment	
	(flourrscien) of Pseudomonas, D, E, F, G, H, and I	
	gram stain of LAB isolates.	99
13	Identification report of fungal isolates.	102
14	Distribution percentage of fungal isolates.	103
15	Morphological characters of Pochonia suchlasporia:	
	Photo (A); colony on PDA, Photo (B); reverse colony	
	on PDA, Photo (C); colony on CZA medium,	
	Photo (D); reverse colony on CZA, C; light	
	microscopic pictures of conidiophores and conidia.	105
16	Morphological characters of Aspergillus terrus:	
	Photo (A); colony on CZA, Photo (B); reverse	
	colony on CZA, Photo (C); colony on PDA, Photo	
	(D); reverse colony on PDA and E; under light	
	microscope.	106
17	Morphological characters of Penicillium	
	corylophilum: Photo (A); colony on CZA, Photo	
	(B); reverse colony on CZA, C; colony on PDA,	
	Photo (D); under light microscopic.	107

List of Figures

No.	Title	Page No.
18	Morphological characters of Aspergillus nidulans:	
	Photo (A); colony on CZA, Photo (B); reverse	
	colony on CZA, Photo (C); colony on PDA.	108
19	Morphological characters of Penicillium	
	chrysogenum: Photo (A); colony on CZA, Photo	
	(B); reverse colony on CZA, Photo (C); colony on	
	PDA medium.	108
20	(A)Agarose gel electrophoresis showing	
	amplification of 16s rDNA gene; Lane 1: 1 kb Plus	
	DNA Ladder; 2: Fructobacillus fructosus HI-1; 3:	
	Lactobacillus plantarum HI-2, (B); partial	
	sequence of 16S rRNA gene of DNA of	
	Fructobacillus fructosus HI-2, (C); partial	
	sequence of 16S rRNA gene of DNA of L.	
	plantarum HI-2.	110
21	Phylogenetic tree of Fructobacillus fructosus starin	
	HI-1.	111
22	Phylogenetic tree of Lactobacillus plantarum starin	
	HI-2.	111
23	TLC of bioactive purified fractions of	
	Fructobacillus fructosus metabolites extracted by	
	ethyl acetate	113
24	Antibacterial activity of bioactive fractions of	
	Fructobacillus fructosus metabolic EA extract	
	against P. larvae.	113

List of Figures

No.	Title	Page No.
25	GC-MS analysis of fraction No. 1, hepta -2-methyl	
	butyrate, Di-isobutyl and D-Turanose, heptakis	
	(trimethylsilyl).	116
26	GC-MS analysis of fraction No. 5, 1,2-	
	Benzenedicarboxylic acid; diisooctyl. ester	116
27	Mass spectrum analysis of compound No. 6,	
	Hyodeoxicholic acid	117
28	GC-MS analysis of metabolites of Lactobacillus	
	Plantarum EA. extract.	120
29	Mass spectrum of compound No. 1 disopropyl	
	phenylacetate.	120
30	Mass spectra of compound No. 2; 3,4-dihydro-6,7	
	dimethoxyisoquinoline 2-oxide.	121
31	Mass spectrum of compound No. 3 pentyl acetate.	121
32	Mass spectrum of compound No. 4 Ethyl	
	isopropoxy acetate.	122
33	Mass spectrum of compound No. 5; à-	
	Hydroxyisocaproic acid.	122
34	Mass spectrum of compound No. 6; di-(2-	
	ethylhexyl) phthalate.	123
35	Effect of CFS of Fructobacillus fructosus on	
	survival rates percentage of larvae infected with P.	
	Larvae spores.	129
36	Effect of CFS of Lactobacillus plantarum on	
	survival rates percentage of larvae infected with	130

List of Figures

No.	Title	Page No.
	Ascosphaera apis spores.	
37	<i>In vivo</i> therapeutic effect of <i>Fructobacillus</i> <i>fructosus</i> and <i>Lactobacillus plantarum</i> CFSs. Photo; H, I larvae infected with <i>P. larvae</i> ; Photo;	
	J, larvae infected with Ascosphaera apis.	131

List of Abbreviations

A/A	Acid/acid
AAB	acetic acid bacteria
A/Ag	Acid/acid,gas
AFB	American foulbrood
^o C	Celsius
CCD	Colony collapse disorder
CFS	Cell Free Supernatant
CFU	Colony forming unit
cm	centimeters
DEHP	Di-(2-ethylhexyl) phthalate
DNA	Deoxyribonucleic acid
EA	Ethyl acetate
FAO	Food and Agriculture Organization
EFB	European foulbrood
EMB	Eosin-methylene blue agar
FLAB	Fructophilic lactic acid bacteria
GC	Gas chromatography
GC/MS	Gas chromatography/ mass spectroscopy
hr	Hour
Kg	Kilogram
Km	Kilometer
LAB	Lactic acid bacteria
LD ₅₀	Lethal dose

L.S.D	Least Significant Difference
MAC	MacConkey`s medium
MBC	Minimum Bactericidal concentration
MIC	Minimum inhibitory concentration
mg	milligram
min	Minute
MR	Methyl red test
MRS	de Man, Rogosa and Sharpe medium
MYPGP	Muller Hinton, yeast, phosphate, glucose & pyruvic acid medium
NCBI	National Center for Biotechnology Information
ND	Not Detected
OIE	Office International des Epizooties
ONPG	O- Nitrophenyl- β- D- galactopyranoside
OTCR	OTC-resistant
Р	Probability
PAA	Phenyl Acetic Acid
PBS	Phosphate buffer saline
PCR	Polymerase chain reaction
PDA	Potato Dextrose Agar medium

- **pH** potential of hydrogen
- **ppm** part per million
- **rDNA** ribosomal DNA
- **rRNA** ribosomal Ribonucleic acid
- **rpm** Round per minute
- **SD** Standard deviation
- SE Standard Error
- Sp Species
- TCA trichloroisocyanuric acid
- TcR tetracycline- resistant
- TSI Triple Sugar Iron Agar
- UV Ultra violet
- μl microliter
- μm micrometer
- **VOC** Volatile organic compound
- VP Vogas- Poskauer test
- w/v Weight / volume
- YGPSA yeast, glucose, phosphate, starch agar medium

ABSTRACT

The current study was investigating the variation in microbial loads of honey bee gut of 5^{th} instar larvae and adult foragers in addition to documented the effect and correlation of different variables; type of microorganism, blooming season, and apiary location on these microbial loads. Different bacterial and fungal isolates were isolated and purified from samples.

Antibacterial and antifungal activities of all isolated microflora were screened against two honey bee pathogens; *Paenibacillus larvae* and *Ascosphaera apis* (pathogens of American foulbrood and chalkbrood diseases, respectively). Identification of isolated bacteria and fungi was carried out, also distribution of antagonisms among isolated and identified microflora was summarized.

Two new bacterial strains were identified as most potent isolates against *Paenibacillus larvae* and *Ascosphaera apis* using 16S rDNA and Blast analysis; *Fructobacillus fructosus* HI-1 and *Lactobacillus plantarum* HI-2, respectively. Also, isolation and identification of active metabolites of ethyl acetate extract of *Fructobacillus fructosus* HI-1 and *Lactobacillus plantarum* HI-2 CFSs were conducted. In addition, MICs and MBCs of *Fructobacillus fructosus* HI-1 CFS and *Lactobacillus plantarum* HI-2 CFS were determined.

The therapeutic effect of *Fructobacillus fructosus* HI-1 and *Lactobacillus plantarum* HI-2 was revealed in laboratory on honey bee larvae artificially infected with *Paenibacillus larvae* and *Ascosphaera apis*, respectively.