ABSTRACT

The purpose of this study is to use the laser technology in applicable for automating drip irrigation systems, to manage and operate the drip irrigation system, and to save water and energy and high production. In this research a new instrument of Laser Control Unit (LCU) is design and built in laser institute Cairo University. The new instrument is consists of laser sours, sensor and micro control unit. The use of LCU depends on the optical properties of leaf such as transmittance, reflectance and absorption of laser beam. The correlation between leaf water content and laser beam transmitted from leaves (LBT) was used to detect when the automate irrigation system operate and how much water applied. Three experimental was carried at laboratory, greenhouse and open field.

The first experimental was carried in lab of laser institute to test the LCU, with use of many leaves for different plant, vegetable crop (cucumber and squash), fruit and decoration plants. The values of laser beam transmitted from leaves which recorded in micro controller unit was used to establish the value of LBT by mV which used to operate the automate drip irrigation system for fully, moderate and deficit water regime to irrigate different plants.

Secondly experiment was carried in greenhouse for vegetable crop (cucumber and squash) used the LCU and the values of LBT by mV which the automate system. The data of LCU was recorded in data logger in said the LCU, on the same time two either instruments were used to calibrated the data recorded by LCU. These instruments were infrared thermometer (IRT) and soil moisture meter (SMM). The three instruments were used to measure and recorded the data each 2 - 4 hours day of six day in the week, form week 4 to week 9 for plant stage of cucumber and squash.

The compression study for the data recorded by the three instruments exhibited that, there are similar trend for values according to the measure unit. The low LBT 65 mV in face of high SMC was 16% and low value of dt -2.5 $^{\circ}$ C.

Third experiment was carried in open field, using the LCU and automates drip irrigation system in the same soil and water resource of greenhouse; also the same three instruments were used in open field.

The data of three experiments were discussion and analysis, from the three experimental the values by mV which recorded LCU to operate automate drip irrigation system for cucumber and squash were 65, 75 and 85 mV for fully, moderate and deficit irrigation respectively.

The crop water use efficiency (CWUE) for cucumber was 40, 32.5 and 30 kg/m³ for greenhouse, while it was 13.4, 10.8 and 10 kg/m³ in open field for water regimes of 100, 85 and 75 % respectively, comparison with Traditional method it was 8.55 kg/m³.

The crop water use efficiency (WUE) for squash was 40, 37.9 and 36.4 kg/m³ for greenhouse, while it were 10.3, 8.7 and 7.9 kg/m³ in open field for water regimes of 100, 85 and 75% respectively, comparison with Traditional method it was 8.3 kg/m³.

Finally it can be concluded that, the best value of LBT is 65 mV for water regime of 100 %.

Key words: Laser, Sensor, Control, leaf water content, Optical Properties, Irrigation Control

List of Contents

1.	. NTRODUCTION	1
2.	. LITERATURE REVIEW	3
	2.1. Automation of Drip irrigation	3
	2.2. Irrigation water requirements for drip irrigation	6
	2.3. Sensors and Automation	7
	2.4. Laser Techniques	8
	2.5. Laser application through irrigation system	10
	2.6. Infrared thermometer (IRT) in irrigation	15
	2.7. Water use efficiency and water productivity	18
	2.8. Integrated water management	20
	2.9. Drip irrigation sensors	21
3.	. MATERIALS AND METHODS	24
	3.1.Material	24
	3.1.1. Laser control unit "LCU", setup	24
	3.1.1.1. Laser leaf plant sensor unit "LLPS"	25
	3.1.1.2.Electrical control unit	29
	3.1.2. Automated drip irrigation system	29
	3.1.3. Greenhouse	30
	3.1.4.Plants	30
	3.1.5. Area location with Soil analysis	31
	3.2.Methods	33
	3.2.1.Experimental procedure	33
	3.2.1.1.Laboratory experiment	33
	3.2.1.2.Field experimental	34

3.2.2.Instruments	35
3.2.2.1. Infrared thermometer	35
3.2.2.2. Soil moisture meter	35
3.2.2.3. Electric oven	36
3.2.2.4. Electrical balance	36
3.2.2.5. Digital vernier caliber	37
3.2.2.6. Measuring tap	37
3.3. Method	37
3.3.1. Via photovoltaic	37
3.3.2. Net irrigation requirement	37
3.3.3. Leaf water contents (LWC)	38
3.3.4. Infrared thermometer measurements (IRT)	38
3.4. Statistical analysis	38
4. RESULTS AND DISCUSSION	39
4.1.The laboratory experimental	39
4.1.2. The relationship of leaf water content "LWC" on the laser beam	40
transmit "LBT" with time for cucumber and squash plants	40
4.2. Greenhouses experiments	48
4.2.1.Cucumber crop in greenhouse	50
4.2.1.1. Compression between laser beam transmitted (LBT), soil moisture	
content (SMC) and different canopy temperature (dt) for cucumber	49
plant	
4.2.1.2. Soil moisture content (SMC)	60
4.2.1.3. Canopy Temperature	61
4.2.2. Squash crop in greenhouse	63
4.2.2.1. Compression between laser beam transmitted (LBT), soil moisture	63

content (SMC) and infrared thermometer (IR) for squash crop	
4.2.2.2. Soil moisture content for squash crop	74
4.2.2.3. Canopy temperature	74
4.3. Open field experimental	76
4.3.1.The relationship between LBT and dt under automate drip irrigation	76
using LCU in open field for cucumber plant	76
4.3.2. The relationship between LBT and dt under automate drip irrigation	79
using LCU in open field for squash plant	79
4.3.3. Soil moisture content SMC for cucumber and squash crop with	81
different values of LBT. Under different water regimes using LCU	01
4.3.4. Statistical analysis	85
4.4. Crop production and water use efficiency (WUE)	88
4.4.1.Crop yield	88
4.4.2.Crop water use efficiency (CWUE)	90
Summary and Conclusion	93
References	97
Arabic Summary	-

List of Figures

Fig. (2-1)	Overview of the system installed in the area	7
Fig. (2-2)	Generation of LASER	9
Fig. (2-3)	Types of LASER-tissue interaction	10
Fig.(3-1):	Laser leaf plant sensor "LLPS"	26
Fig. (3-2):	Laser leaf plant sensor "LLPS", isometric	26
Fig. (3-3):	Main views of laser leaf plant sensor "LLPS"	27
Fig (3-4):	Photodiode sensor	28
Fig. (3-5):	Main views of photodiode sensor	28
Fig. (3-6):	Main components of electrical control units	29
Fig. (3-7):	Automated drip irrigation system layout for field experiment	31
Fig.(3-8):	Finale set up of laser leaf plant sensor "LLPS"	34
Fig (3-9):	Infrared thermometer	35
Fig (3.10):	Soil moisture meter	35
Fig (4-1):	The relationship between leaf water content (LWC) and laser beam transmitted (LBT) of cucumber leaves at different day times during growth plant period.	44
Fig (4-2):	The relationship between leaf water content (LWC) and laser beam transmitted (LBT) of squash leaves at different day times during growth plant period	45
Fig (4-3):	Flowchart for laser control programing	48
Fig (4-4):.	Comparative study of Laser beam transmits (LBT), different canopy temperature (dt) and soil moisture content (SMC) for weeks 4 th and 5 th for cucumber plants under greenhouses	53
Fig (4-5):	Comparative study of Laser beam transmits (LBT), different canopy temperature (dt) and soil moisture content (SMC) for	56

weeks 6th and 7th for cucumber plants under greenhouses.....

Fig (4-6):	Comparative study of Laser beam transmits (LBT), different canopy temperature (dt) and soil moisture content (SMC) for weeks 8 th and 9 th for cucumber plants under greenhouses	59
Fig (4-7):	Comparative study of Laser beam transmits (LBT), different canopy temperature (dt) and soil moisture content (SMC) for weeks 4 th and 5 th for squash plants under greenhouses	67
Fig (4-8):	Comparative study of Laser beam transmits (LBT), different canopy temperature (dt) and soil moisture content (SMC) for weeks 6 th and 7 th for squash plants under greenhouses	70
Fig (4-9):	Comparative study of Laser beam transmits (LBT), different canopy temperature (dt) and soil moisture content (SMC) for weeks 8 th and 9 th for cucumber plants under greenhouses	73
Fig (4-10):	Different temperature between canopy and air temperatures (dt) before irrigation (BI) and after irrigation (AI) for cucumber at different water regimes (WR) in open field	78
Fig (4-11):	Different temperature between canopy and air temperatures (dt) before irrigation (BI) and after irrigation (AI) for squash at different water regimes (WR) in open field	80
Fig (4-12):	Soil moisture content (SMC) before irrigation (BI) and after irrigation (AI) for cucumber plant for three values of LBT (65, 75 and 85 mV), represent of WR (100, 85 and 70%) in open field	82
Fig (4-13):	Soil moisture content (SMC) before irrigation (BI) and after irrigation (AI) for squash for three values of LBT (65, 75 and 85 mV), represent of WR (100, 85 and 70%) in open field	84

Fig (4-14): Average yield of cucumber production under different irrigation 89

regimes for greenhouse, open filed and traditional under drip irrigation.....

Fig (4-15): Average yield of squash production under different irrigation 90 regimes for greenhouse, open filed and tradition under drip irrigation.....

List of Tables

Table (3-1):	Diode laser (laser source) spécifications	27
Table (3-2):	Photodiode sensor specifications	28
Table(3-3):	Soil texture, physical and mechanical properties of experimental in El-Huseen site	32
Table (3-4):	Soil chemical analysis of experimental in El-Huseen site	32
Table (3-5):	Infrared thermometer specifications	35
Table (3-6):	Soil moisture meter specifications	36
Table (3-7):	Electrical balance specifications	36
Table (4-1):	The average recorded data by laser controller unit for different crops, daily before (BI) and after (AI) irrigation for water applied of field capacity in laboratory	40
Table (4-2):	Relationship between the average of laser beam transmitted "LBT" and leaf water content "LWC" for cucumber plant under drip irrigation	42
Table (4-3):	Relationship between the average of laser beam transmitted "LBT" and leaf water content "LWC" for squash plant under drip irrigation	43

Table (4-4):	Statistical analysis between LBT and LWC with time for cucumber and squash plant	46
Table (4-5):	The laser beam transmit "LBT", soil moisture content "SMC" and different canopy temperature "dt" during the days of 4th week for Cucumber in greenhouse	51
Table (4-6):	The laser beam (LBT) transmit, soil moisture content (SMC) and different canopy temperature (dt) during the days of 5 th week for the Cucumber in greenhouse	52
Table (4-7):	The laser beam transmit (LBT), soil moisture content (SMC) and different canopy temperature (dt) during the days of 6 th week for the Cucumber in greenhouse	54
Table (4-8):	The laser beam transmit (LBT), soil moisture content (SMC) and different canopy temperature (dt) during the days of 7 th week for the Cucumber in greenhouse	55
Table (4-9):	The laser beam transmit (LBT), soil moisture content (SMC) and different canopy temperature (dt) during the days of 8 th week for the Cucumber in greenhouse	57
Table (4-10):	laser beam transmit (LBT), soil moisture content (SMC) and different canopy temperature (dt) during the days of 9 th week for the Cucumber in greenhouse	58
Table (4-11):	The laser beam transmit (LBT), soil moisture content (SMC) and different canopy temperature (dt) during the days of 4 th week for the Squash in greenhouse	65
Table (4-12):	The laser beam transmit (LBT), soil moisture content (SMC) and different canopy temperature (dt) during the days of 5 th week for the Squash in greenhouse	66

Table (4-13):	The laser beam transmit (LBT), soil moisture content (SMC) and different canopy temperature (dt) during the days of 6 th week for the Squash in greenhouse	68
Table (4-14):	The laser beam transmit (LBT), soil moisture content (SMC) and different canopy temperature (dt) during the days of 7 th week for the Squash in greenhouse	69
Table (4-15):	The laser beam transmit (LBT), soil moisture content (SMC) and different canopy temperature (dt) during the days of 8 th week for the Squash in greenhouse	71
Table (4-16):	The laser beam transmit (LBT), soil moisture content (SMC) and different canopy temperature (dt) during the days of 9 th week for the Squash in greenhouse.	72
Table (4-17):	Different temperature between canopy and air temperatures (dt) before (BI) and after (AI) irrigation for cucumber for three values of (LBT) at different water regimes (WR) in open field	78
Table (4-18):	Different temperature between canopy and air temperatures (dt) before (BI) and after (AI) irrigation for squash for three values of (LBT) at different water regimes (WR) in open field	80
Table (4-19):	Soil moisture content (SMC) before (BI) and after (AI) irrigation for cucumber plant for three values of LBT (65, 75 and 85 mV) represent of WR (100, 85 and 70%) in open field	82
Table (4-20):	Soil moisture content (SMC) before (BI) and after (AI) irrigation for squash for three values of LBT (65, 75 and 85 mV) represent of WR (100, 85 and 70%) in open field	84
Table (4-21):	Analysis of variance for dt, SMC and LBT readings before and after irrigation for cucumber and squash in open field	86

Table (4-22):	Effect of water regimes (WR) on dt, SMC and LBT during nine weeks in cucumber and squash plants. Means followed by	87
	similar letters in each column are not significantly different at 5% probability level	
Table (4-23):	Average yield of cucumber production under different irrigation water regimes for greenhouse, open filed and traditional under drip irrigation	88
Table (4-24):	Average yield of squash production under different irrigation regimes for greenhouse, open filed and traditional under drip irrigation	90
Table (4-25):	Effect the interaction between irrigation system and water regimes on water use efficiency for cucumber	91
Table (4-26):	Effect the interaction between irrigation system and water regimes on water use efficiency for squash	91