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Aim of the work 

Pesticides have numerous beneficial effects including crop protection, 

preservation of food and materials and prevention of vector-borne 

diseases. Thus, several series of organic pesticides have been developed 

because of the continuously increasing of the total population over the 

world. The mode of action of these pesticides is mainly targeting of 

various systems or enzymes in the pests which might be identical to the 

systems or enzymes in human beings. Therefore, they caused intensive 

risks to human health and environment. Considering overall merits of 

nanomaterials to meet the food security challenges such as targeted 

delivery of the pesticides, promote the seed germination and plant 

growth, increase crop yield, improve food quality, control of the 

pestiferous insects that destroy crops and their products for sustainable 

agriculture. In the present thesis, we are aiming to develop alternative 

pesticides based on nanostructured materials. Several nanostructured 

metal oxides will be synthesized using simple and eco-friendly methods 

to explore alternative sustainable pesticides for cotton leafworm, 

Spodoptera littoralis (Boisd) control.  
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Abstract 

In modern agriculture, pesticides are playing an important role because 

they have a powerful biological activity to protect plants from several 

pests. However, the popular usage of organic pesticides in the entire 

world causes intensive environmental and health problems. Therefore, 

many countries are now switching over from chemical-based agriculture 

to green agriculture, where the utilization of bio-pesticide has a 

significant role in pest control. In this thesis, we explored alternative 

inorganic pesticides based on metal oxide nanostructures for Spodoptera 

littoralis (Boisd) control. Several metal oxide nanostructures with 

controlled particle size and shape have been developed via simple wet-

chemical methods. The fabricated metal oxides nanostructures were 

characterized by fourier transform infrared spectroscopy (FTIR), X-ray 

diffraction (XRD), field emission scanning electron microscopy (FE-

SEM), transmission electron microscopy (TEM) and N2 

adsorption/desorption isotherms. 

Silica nanostructures were synthesised by using soft-template 

method including different structure-directing agents (i.e. triton X100; 

TX-100, cetyltrimethylammonium bromide; CTAB, and 

polyvinylpyrrolidone; PVP). It was found that, the experimental 

conditions play a significant role not only for controlling the physical 

properties (size, shape and surface properties) but also reflecting 

dissimilar entomotoxic effects against Spodoptera littoralis. The 

fabricated silica NPs in presence of PVP (SiP) exhibited the highest 

entomotoxic effect due to their small particle size. Although the 

significant pesticidal activity of SiP compared to commercial silica, the 
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cost of the synthesis methodology is still expensive. Therefore, next 

attention was turning to simple hydrothermal modification of commercial 

kaolin using NaOH and Na2HPO4 reagents. Such treatment altered not 

only the physicochemical characteristics of kaolin in terms of shape, 

crystallinity chemical composition and surface functionality but also their 

pesticidal activity. It was found that, phosphate modified kaolin (PMK) 

has a faster entomotoxic effect than NaOH modified kaolin (AMK). The 

difference in the entomotoxic effect of AMK and PMK might be related 

to their chemical composition, and surface functionalities. To maximize 

the usage and applicability of metal oxide nanostructures as a green 

pesticide, two metal oxides of essential nutrient elements have also 

applied. Copper and calcium oxides were fabricated via template-less 

method. It was found that, the CuO with flower-like morphology has a 

faster entomotoxic effect than CaO ceramic sheets. Such bi-functional 

metal oxides might play a significant role in the development of pesticide 

formulations.  

To explore the mode of action of the metal oxide nanostructures, 

biochemical analyses and histological changes of treated and 

untreated/control 6
th
 instar larvae of Spodoptera littoralis have been 

considered. The results showed that, the treated larvae of Spodoptera 

littoralis exhibited intensive damage in mid-gut as well as cuticle 

abrasion compared to control set (untreated). Hence, the application of 

metal oxide nanostructures in pest management programs will be helpful 

for environmental and human health, because they provide an alternative 

strategy for Spodoptera littoralis control with an intelligent mode of 

action and mitigate the organic contaminations in the environment. 

 




