List of Contents

List of Figures	IV
List of Tables	VII
List of abbreviations	VIII
Aim of the work	IX
Abstract	Х
1. Introduction	1
1.1. Cultivation of cotton in Egypt	1
1.2. Cotton leafworm	3
1.3. Cotton leafworm control	8
1.4. Nanotechnology and modern agriculture	10
1.4.1. Nanoemulsions	12
1.4.2. Hybrid nanoformulations	14
1.4.3. Nanomaterials as active ingredients	16
1.4.3.1. Silica nanoparticles	16
1.4.3.2. Kaolin	19
1.4.3.3. CuO nanoparticles	21
1.4.3.4. CaO nanoparticles	22
2. Materials and Methods	24
2.1. Chemicals	24
2.2. Insects	24
2.3. Synthesis of silica nanostructures	24
2.4. Modification of commercial kaolin	27
2.5. Synthesis of CuO NPs with flower -like morphology	28
2.6. Synthesis of CaO NPs with hexagonal sheet-like morphology	28

2.7. Materials characterizations	29
2.7.1. Fourier transformation infrared (FTIR)	29
2.7.2. X-ray diffraction (XRD)	30
2.7.3. N ₂ Adsorption/desorption isotherms	32
2.7.4. Field emission scanning electron microscopy (FE-SEM)	33
2.7.5. Transmission electron microscopy (TEM)	34
2.8. Bioassay	35
2.9. Biochemical analyses	36
2.10. Histological studies	37
3. Results and Discussion	38
3.1. Silica nanostructures	38
3.1.1. Physicochemical characteristics of silica nanostructures	38
3.1.1.1. FTIR analysis	38
3.1.1.2. X-ray analysis	39
3.1.1.3. Textural properties	39
3.1.1.4. FE-SEM and TEM analyses	41
3.1.2. Entomotoxic effects	42
3.1.3. Biochemical analyses	45
3.1.4. Histological changes	48
3.2. Modified kaolin	50
3.2.1. Physicochemical characteristics of modified kaolin	50
3.2.1.1. FTIR analysis	50
3.2.1.2. X-ray analysis	52
3.2.1.3. Textural properties	53
3.2.1.4. FE-SEM and TEM analyses	55
3.2.2. Entomotoxic effects	56

3.2.3. Biochemical analyses	59
3.2.4. Histological changes	62
3.3. CuO and CaO nanostructures	64
3.3.1. Physicochemical characteristics of CuO and CaO nanostructures	64
3.3.1.1. FTIR analysis	64
3.3.1.2 X-ray analysis	65
3.3.1.3. Textural properties	65
3.3.1.4. FE-SEM & TEM analyses	66
3.3.2. Entomotoxic effects	67
3.3.3. Biochemical analyses	70
3.3.4. Histological changes	72
3.4. Entomotoxic effect of methomyl	73
4. English Summery	75
5. References	78
6. Publications	91
7. Arabic summery	1

List of Figures

Figure 1.1. (a) Egyptian cotton production 2005-2017, (b) Egypt cotton	
exports January-November 2015	2
Figure 1.2. Schematic representation of Spodoptera littoralis life	
cycle	4
Figure 1.3. (a) Schematic representation of the various layers of the	
Spodoptera littoralis cuticle structure, (b) proposed structure for	
diphenol mediated cross-link between protein and chitin	6
Figure 1.4. Schematic representation of <i>Spodoptera littoralis</i> mid-gut	7
	/
Figure 1.5. Schematic representation of nanomaterials applications in	10
agricultural production and crop protection	12
Figure 1.6. Schematic diagram of the preparation and release of the	
LC/CO-PU nanoemulsion.	14
Figure 1.7. Schematic synthesis rout of photoresponsive herbicide-	
loaded micelle based on 2-nitrobenzyl succinate-carboxymethyl	
chitosan	15
Figure 1.8. Schematic representation of ZnO NPs combined thiram to	
form composite antifungal	16
Figure 1.9. Schematic representation of (a) acid catalyzed hydrolysis,	
and (b) base catalyzed hydrolysis of silicon alkoxides	18
Figure 1.10. Schematic representation of (a) acid catalyzed	
condensation, and (b) base catalyzed condensation of silicon	
alkoxides	18
Figure 1.11. Schematic representation of kaolin structure	20
Figure 2.1. Schematic representation of synthesis steps for formation of	
SiT	25
Figure 2.2. Schematic representation of synthesis steps for formation of	
SiC	26
Figure 2.3. Schematic representation of synthesis steps for formation of	
SiP	26
Figure 2.4. Schematic representation of chemical modification for	
commercial kaolin	27
Figure 2.5. Schematic representation of synthesis steps for formation of	
CuO flower-like nanostructure	28
Figure 2.6. Schematic representation of synthesis steps for formation of	
CaO sheets- like morphology	29
Figure 2.7. Schematic instrumental representation of FTIR	30
6 · · · · · · · · · · · · · · · · · · ·	20
Figure 2.8. Diffraction of X- rays by a crystal according to Bragg's law.	31

Figure 2.9. The IUPAC classifications of various adsorption/desorption	
isotherms	32
Figure 2.10. Schematic representation of feeding bioassay method	36
Figure 3.1. FTIR spectra of commercial silica (SiO ₂), SiT, SiP, and SiC	
before and after thermal treatment	38
Figure 3.2. Wide angle X-ray diffraction (XRD) of SiT, SiP and SiC	
nanostructures	39
Figure 3.3. (a) Nitrogen adsorption/desorption isotherm and (b)	
corresponding pore size distribution curves for silica samples SiT,	
SiP and SiC	40
Figure 3.4. FE-SEM and TEM images of SiT (a, and b), SiC (c, and d),	
SiP (e, and f) samples	41
Figure 3.5. Toxicity curves for 2 nd instar larvae of <i>Spodoptera littoralis</i>	
exposed to different concentrations of SiT, SiC, and SiP for 11days	
via feeding bioassay method(a, b, and c), Toxicity curves for 2 nd	
instar larvae of Spodoptera littoralis exposed to 600 ppm of SiT,	
SiC, and SiP at indicating days via feeding bioassay method(d, e,	
and f)	44
Figure 3.6. Photographic images of morphological changes for 6 th instar	
of Spodoptera littoralis exposed to 1000 ppm SiT, SiC, and SiP via	
feeding bioassay method	45
Figure 3.7. Mid-gut cross sections of 6 th instar larvae for control (a) and	
treated Spodoptera littoralis with LC50 of SiT (b), SiC (c) and SiP	
(d) via feeding bioassay method (×20 H-E), and (e-h) their	
corresponding cuticle structure (×100 H-E)	49
Figure 3.8. FTIR spectra of commercial kaolin (CK), metakaolin (MK),	
alkaline modified kaolin (AMK) and phosphate modified kaolin	
(PMK)	51
Figure 3.19. Wide angle X-ray diffraction (XRD) of commercial kaolin	
(CK), metakaolin (MK), alkaline modified kaolin (AMK) and	
phosphate modified kaolin (PMK)	53
Figure 3.10. (a) Nitrogen adsorption/desorption isotherm and (b)	
corresponding pore size distribution curves for modified kaolin	
samples MK, AMK, and PMK	54
Figure 3.11. FE-SEM and TEM images of meta-kaolin (a, d, and g),	
alkaline modified kaolin (b, e, and h), phosphate modified kaolin	
(c, f, and i)	55
Figure 3.12. Toxicity curves for 2 nd instar larvae of <i>Spodoptera littoralis</i>	
exposed to different concentrations of PMK for 3 days and MK,	
AMK for 11 days via feeding bioassay method(a, b, and c), (b)	
Toxicity curves for 2 nd instar larvae of Spodoptera littoralis	
exposed to 600 pm of AMK and PMK at indicated days via feeding	

bioassay(d and e)	58
Figure 3.13. Photographic images of morphological changes for 4 th instar of <i>Spodoptera littoralis</i> exposed to 1000 ppm MK, AMK, and PMK via feeding bioassay method	59
Figure 3.14 . Mid-gut cross sections of 6 th instar larvae for control (a) and treated <i>Spodoptera littoralis</i> with LC50 of MK (b), AMK (c) and PMK (d) <i>via</i> feeding bioassay method (×20 H-E), and (e-h)	
their corresponding cuticle structure (×100 H-E)	63
Figure 3.15. FTIR spectra of (a) CuO, and (b) CaO	64
Figure 3.16. Wide angle X-ray diffraction (XRD) of CuO and CaO	
nanostructures	65
Figure 3.17. (a)Nitrogen adsorption/desorption isotherm and (b)	
corresponding pore size distribution curves for CuO and CaO	66
Figure 3.18. FE-SEM of CuO and CaO nanostructures (a and b), and	7
TEM images (c and d) CuO, and (e and f) CaO	6/
Figure 3.19. Toxicity curves for 2 nd instar larvae of <i>Spodoptera littoralis</i> exposed to different concentrations of CuO for 3 days and CaO for 11 days <i>via</i> feeding bioassay method(a and b), Toxicity curves for 2 nd instar larvae of <i>Spodoptera littoralis</i> exposed to 600 ppm of CuO and CaO at indicated days <i>via</i> feeding bioassay method(c and	
d)	69
Figure 3.20. Photographic images of morphological changes for 3 rd instar of <i>Spodoptera littoralis</i> exposed to 600 ppm CaO and CuO <i>via</i> feeding bioassay method	70
Figure 3.21 (a) Mid-gut cross sections of 6 th instar larvae for control	70
and treated <i>Spodoptera littoralis</i> with LC50 of CuO and CaO NPs <i>via</i> feeding bioassay (×20 10 H-E), and (b) the their corresponding cuticle structure (×100 H-E)	73
Figure 3.22. Toxicity curve for 2^{nd} instar larvae of <i>Spodoptera littoralis</i>	
exposed to different concentrations of methomyl pesticide for one day <i>via</i> feeding bioassay method	74

2018

List of Tables

Table 3.1. Percentages of accumulative mortality (%) at indicated	
days of Spodoptera littoralis exposed to 250,500 and 1000 ppm	
of commercial silica (SiO ₂), SiT, SiC and SiP via feeding	
bioassay method	43
Table .3.2. Total carbohydrates, total proteins, total lipids, phenol	
oxidase activity and chitinase activity of 6 th instars of <i>Spodoptera</i>	
littoralis treated with LC50 of SiT, SiC and SiP via feeding	
bioassay method. $P < 0.05$, [n; not significant $P \ge 0.05$, a;	
significant $P < 0.05$, b; high significant $P < 0.01$, c; very high	
significant P<0.001]	47
Table .3.3 Percentages of accumulative mortality (%) at indicated	
days of Spodoptera littoralis exposed to 250,500 and 1000 ppm	
of MK, AMK, and PMK via feeding bioassay method	57
Table 3.4. Total carbohydrates, total proteins, total lipids, phenol	
oxidase activity and chitinase activity of 6 th instars of Spodoptera	
littoralis treated with LC50 of MK, AMK and PMK via feeding	
bioassay method. $P < 0.05$, [n; not significant $P \ge 0.05$, a;	
significant $P < 0.05$, b; high significant $P < 0.01$, c; very high	
significant <i>P</i> <0.001]	61
Table 3.5. Percentages of accumulative mortality (%) at indicated	
days of Spodoptera littoralis exposed to 150,300, and 600 ppm	
of CuO and CaO via feeding bioassay method	68
Table 3.6. Total carbohydrates, total proteins, total lipids, phenol	
oxidase activity and chitinase activity of 6 th instars of Spodoptera	
littoralis treated with LC50 of CuO and CaO via feeding	
bioassay method. $P < 0.05$, [n; not significant $P \ge 0.05$, a;	
significant $P < 0.05$, b; high significant $P < 0.01$, c; very high	
significant <i>P</i> <0.001]	71
Table 3.7. Percentages of acute mortality (%) after one-day post	
treatment of Spodoptera littoralis exposed to 150, 300 and 600	
ppm of methomyl pesticide via feeding bioassay method	74
Table 3.8. The pesticidal activity of methomyl pesticide, SiT, SiC,	
SiP, MK, AMK and PMK, CuO and CaO against Spodoptera	
littoralis via feeding bioassay method	77

List	of al	obrevia	<u>itions</u>

TX-100	Triton X100
CTAB	cetyltrimethylammonium bromide
PVP	Polyvinyl pyrrolidone
TMOS	Tetramethyl orthosilicate
SiO ₂	Commercial silica
NPs	Nanoparticles
SiT	Silica NPs prepared in the presence of T-X100
SiC	Silica NPs prepared in the presence of CTAB
SiP	Silica NPs prepared in the presence of PVP
MS	Mesoporous silica
СК	Commercial kaolin
MK	Meta-kaolin
AMK	Alkaline modified kaolin
РМК	Phosphate modified kaolin
EPPO	European and Mediterranean Plant Protection Organization
EPA	Environmental Protection Agency
AIs	Active ingredients
LC ₅₀	The concentration required to achieve 50% of mortality
LD ₅₀	The dose required to achieve 50% of mortality
LT ₅₀	The time required to achieve 50% of mortality
CI	Confidence intervals
UV	Ultraviolet
Vis	Visible
R.H	Relative humidity
FTIR	Fourier transformation infrared
XRD	X-ray diffraction
BET	Brunauer–Emmett–Teller
BJH	Barrett-Joyner-Halenda
FE-SEM	Field emission scanning electron microscopy
TEM	Transmission electron microscopy
OD	Optical density
NAGA	N-acetylglucosamine
H-E	Hematoxylin-Eosin
PIC	Phase inversion composition
ILs	Ionic liquids

Aim of the work

Pesticides have numerous beneficial effects including crop protection, preservation of food and materials and prevention of vector-borne diseases. Thus, several series of organic pesticides have been developed because of the continuously increasing of the total population over the world. The mode of action of these pesticides is mainly targeting of various systems or enzymes in the pests which might be identical to the systems or enzymes in human beings. Therefore, they caused intensive risks to human health and environment. Considering overall merits of nanomaterials to meet the food security challenges such as targeted delivery of the pesticides, promote the seed germination and plant growth, increase crop yield, improve food quality, control of the pestiferous insects that destroy crops and their products for sustainable agriculture. In the present thesis, we are aiming to develop alternative pesticides based on nanostructured materials. Several nanostructured metal oxides will be synthesized using simple and eco-friendly methods to explore alternative sustainable pesticides for cotton leafworm, Spodoptera littoralis (Boisd) control.

<u>Abstract</u>

In modern agriculture, pesticides are playing an important role because they have a powerful biological activity to protect plants from several pests. However, the popular usage of organic pesticides in the entire world causes intensive environmental and health problems. Therefore, many countries are now switching over from chemical-based agriculture to green agriculture, where the utilization of bio-pesticide has a significant role in pest control. In this thesis, we explored alternative inorganic pesticides based on metal oxide nanostructures for Spodoptera littoralis (Boisd) control. Several metal oxide nanostructures with controlled particle size and shape have been developed via simple wetchemical methods. The fabricated metal oxides nanostructures were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM). transmission microscopy (TEM) electron and N_2 adsorption/desorption isotherms.

Silica nanostructures were synthesised by using soft-template method including different structure-directing agents (i.e. triton X100; TX-100, cetyltrimethylammonium bromide; CTAB, and polyvinylpyrrolidone; PVP). It was found that, the experimental conditions play a significant role not only for controlling the physical properties (size, shape and surface properties) but also reflecting dissimilar entomotoxic effects against *Spodoptera littoralis*. The fabricated silica NPs in presence of PVP (SiP) exhibited the highest entomotoxic effect due to their small particle size. Although the significant pesticidal activity of SiP compared to commercial silica, the

cost of the synthesis methodology is still expensive. Therefore, next attention was turning to simple hydrothermal modification of commercial kaolin using NaOH and Na₂HPO₄ reagents. Such treatment altered not only the physicochemical characteristics of kaolin in terms of shape, crystallinity chemical composition and surface functionality but also their pesticidal activity. It was found that, phosphate modified kaolin (PMK) has a faster entomotoxic effect than NaOH modified kaolin (AMK). The difference in the entomotoxic effect of AMK and PMK might be related to their chemical composition, and surface functionalities. To maximize the usage and applicability of metal oxide nanostructures as a green pesticide, two metal oxides of essential nutrient elements have also applied. Copper and calcium oxides were fabricated via template-less method. It was found that, the CuO with flower-like morphology has a faster entomotoxic effect than CaO ceramic sheets. Such bi-functional metal oxides might play a significant role in the development of pesticide formulations.

To explore the mode of action of the metal oxide nanostructures, biochemical analyses and histological changes of treated and untreated/control 6th instar larvae of *Spodoptera littoralis* have been considered. The results showed that, the treated larvae of *Spodoptera littoralis* exhibited intensive damage in mid-gut as well as cuticle abrasion compared to control set (untreated). Hence, the application of metal oxide nanostructures in pest management programs will be helpful for environmental and human health, because they provide an alternative strategy for *Spodoptera littoralis* control with an intelligent mode of action and mitigate the organic contaminations in the environment.