EFFECT OF NITROGEN AND ZINC LEVELS ON YIELD AND TECHNOLOGICAL CHARACTERS OF SOME PROMISING FLAX GENOTYPES

By

RIHAM HAMED HASSAN AHMED

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Cairo Univ., 2004 M.Sc. Agric. Sci. (Agronomy), Fac. Agric., Cairo Univ., 2010

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Agronomy)

Department of Agronomy Faculty of Agriculture Cairo University EGYPT

2018

CONTENTS

INTRODUCTION	1
REVIEW OF LITERATURE	3
MATERIALS AND METHODS	32
RESULTS AND DISCUSSION	39
1. Straw yield and its components	39
a. Plant height	39
b. Technical stem length	42
c. Stem diameter	44
d. Straw yield / plant	46
e. Straw yield / feddan	50
f. Fiber yield / feddan	52
2. Seed yield and its components	62
a. Number of capsules / plant	62
b. Number of seeds / capsule	64
c. Seed yield / plant	66
d. Seed index	71
e. Seed yield / feddan	72
f. Oil yield / feddan	81
3. Technological characters	85
a. Fiber length	85
b. Total fiber percentage	87
c. Oil percentage	91
4. Anatomical manifestation studies	95
a. Total cross section area mm ²	95
b. Cortex area mm ²	95
c. Fiber area mm ²	95
d. Xylem area mm ²	95
e. Pith area mm ²	95
f. Fiber index mm ³	95
g. Cortex area %	97
h. Fiber area %	97
i. Xylem area	97
j. Pith area %	97
SUMMARY	101
KEFEKENCES	109

LIST OF TABLES

Title

No.

1.	Pedigree and plant type of the three promising flax genotype.	33
2.	Soil Physical and chemical analysis of the experimental sites in 2015 and 2016 seasons	33
3.	Main effect of genotypes, zinc concentrations and nitrogen levels on straw yield and its related characters in 2014/15 and	
4.	2015/16 seasons Effect of interaction between genotypes and zinc	41
5	concentrations (G x Zn) on straw yield and its related characters in 2014/15 and 2015/16 seasons	43
5.	(G x N) on straw yield and its related characters in $2014/15$ and $2015/16$ seasons	45
6.	Effect of interaction between zinc concentrations and nitrogen $(Zn \ x \ N)$ levels on straw yield and its related characters in	
7.	2014/15 and 2015/16 seasons Effect of interaction between genotypes, zinc concentrations	47
8	characters in 2014/15 and 2015/16 seasons	49
0.	levels on straw and fiber yield / feddan in 2014/15 and 2015/16 seasons	51
9.	Effect of interaction between genotypes and zinc concentrations (G x Zn) on straw and fiber yield / feddan in	
10.	2014/15 and 2015/16 seasons Effect of interaction between genotypes and nitrogen levels (G	53
1 1	x N) on straw and fiber yield / feddan in 2014/15 and 2015/16 seasons.	57
11.	levels (Zn x N) on straw and fiber yield / feddan in 2014/15 and 2015/16 seasons	60
12.	Effect of interaction between genotypes, zinc concentrations and nitrogen levels (G x Zn x N) on straw and fiber yield /	00
13.	feddan in 2014/15 and 2015/16 seasons Main effect of genotypes, zinc concentrations and nitrogen	61
	levels on seed yield and its related characters in 2014/15 and 2015/16 seasons	63

LIST OF TABLES (Continued)

No.

Title

Page

14.	Effect of interaction between genotypes and zinc concentrations (G x Zn) on seed yield and its related	65
15.	Effect of interaction between genotypes and nitrogen levels (G x N) on seed yield and its related characters in 2014/15	65
16.	and 2015/16 seasons Effect of interaction between zinc concentrations and nitrogen levels (Zn x N) on seed yield and its related characters in	67
17.	2014/15 and 2015/16 seasons Effect of interaction between genotypes, zinc concentrations and nitrogen levels (G x Zn x N) on seed vield and its related	69
18.	characters in 2014/15 and 2015/16 seasons Main effects of genotypes, zinc concentrations and nitrogen levels on seed and oil yield / feddan in 2014/15 and 2015/16	70
19.	Effect of interaction between genotypes and zinc	73
20.	concentrations (G x Zn) on seed and oil yield / feddan in 2014/15 and 2015/16 seasons Effect of interaction between genotypes and nitrogen levels	74
21	(G x N) on seed and oil yield / feddan in 2014/15 and 2015/16 seasons	78
21.	levels (Zn x N) on seed and oil yield / feddan in 2014/15 and 2015/16 seasons	82
22.	Effect of interaction between genotypes, zinc concentrations and nitrogen levels (G x Zn x N) on seed and oil yield / folder in 2014/15 and 2015/16 accesses	01
23.	Main effects of genotypes, zinc concentrations and nitrogen levels on technological characters in 2014/15 and 2015/16	04
24.	seasons Effect of interaction between genotypes and zinc concentration ($G \ge Zn$) on technological characters in	86
25.	2014/15 and 2015/16 seasons Effect of interaction between genotypes and nitrogen level	88
	(G x N) on technological characters in 2014/15 and 2015/16 seasons	90

LIST OF TABLES (Continued)

l	No. Title	Page
26.	Effect of interaction between zinc concentrations and nitrogen levels (Zn x N) on technological characters in $2014/15$ and	
	2015/16 seasons	92
27.	Effect of interaction between genotypes, zinc concentrations and nitrogen levels (G x Zn x N) on technological characters in	
	2014/15 and 2015 /16 seasons	94
28.	Mean values of some anatomical parameters in main flax stems at middle part for highest and lowest treatments in three flax genotypes as affected by zinc concentrations and nitrogen	
	fertilizer levels	96
29.	Percentages of different tissues per the corresponding total cross section area in three flax strains as affected by zinc	
	concentrations and nitrogen fertilizer levels	98

LIST OF FIGURES

No	. Title	Page
1.	Effect of interaction between genotypes and zinc concentrations (G x Zn) on straw yield / feddan in 2014/2015 gengen	51
2.	Effect of interaction between genotypes and zinc concentrations (G x Zn) on straw yield / feddan in	54
3.	Effect of interaction between genotypes and nitrogen levels (G x N) on straw yield / feddan in 2014/2015	54
4.	season Effect of interaction between genotypes and nitrogen levels (G x N) on straw yield / feddan in 2015/2016	55
5.	season Effect of interaction between genotypes and zinc concentrations (G x Zn) on fiber yield / feddan in	55
6.	2014/2015 season. Effect of interaction between genotypes and zinc concentrations (G x Zn) on fiber yield / feddan in	58
7.	2015/2016 season Effect of interaction between genotypes and nitrogen levels (G x N) on fiber yield / feddan in 2014/2015	58
8.	season Effect of interaction between genotypes and nitrogen levels (G x N) on fiber yield / feddan in 2015/2016	59
9.	Effect of interaction between genotypes and zinc concentrations (G x Zn) on seed yield / feddan in	59
10.	Effect of interaction between genotypes and zinc concentrations (G x Zn) on seed yield / feddan in	/5
11.	Effect of interaction between genotypes and nitrogen levels (G x N) on seed yield / feddan in 2014/2015	/5
	season	76

LIST OF FIGURES (Continued)

12.	Effect of interaction between genotypes and nitrogen levels (G x N) on seed vield / feddan in $2015/2016$	
	season	76
13.	Effect of interaction between genotypes and zinc concentrations on oil yield / feddan (G x Zn) in	
14.	2014/2015 season Effect of interaction between genotypes and zinc concentrations on oil yield / feddan (G x Zn) in 2015/2016 season	79 79
15.	Effect of interaction between genotypes and nitrogen levels (G x N) on oil yield / feddan in 2014/2015 season	80
16.	Effect of interaction between genotypes and nitrogen levels (G x N) on oil yield / feddan in 2015/2016 season.	80
17.	Cross section as affected by zinc concentrations (control) and nitrogen levels (30 Kg N\feddan) for the three flax genotypes in the middle region during	
18.	2014/2015 season Cross section as affected by zinc concentrations (300 ppm) and nitrogen levels (60 Kg N\feddan) for the three flax genotypes in the middle region during	99
	2014/2015 season.	100

Name of Candidate: Riham Hamed Has	ssan Ahmed Degree: Ph.D. Title of	
Thesis: Effect of Nitrogen and Zinc Levels on Yield and		
Technological Characters of Some Promising Flax Genotypes.		
Supervisors: Dr. Sohair Elayan Dessoky Elayan		
Dr. Amany Mohamed Abdallah Matbully		
Dr. Saber Hussien Ahmed Mostafa		
Department: Agronomy Approval: 29 / 11 /2018		

ABSTRACT

This study was carried out at Giza Agric. Res. Station. Field Crops Res. Instit., A.R.C. during two successive seasons (2014/2015 and 2015/2016) seasons to evaluate three flax genotypes (S.541-D/10, S.541-C/3, and S.651) released by Fiber crops Res. where grown under three zinc concentrations (Control, 150 and 300 ppm) and three nitrogen levels (30, 45 and 60 kg N/fed.) to study influence of nitrogen and zinc levels on yield and technological characters of some promising flax genotypes and determine the best treatment for higher yield and quality. Results showed significant differences among the three flax genotypes. Whereas, strain 541-D/10 surpassed the other genotypes in technical stem length, straw yield/plant as well as per feddan, fiber yield/feddan and fiber length in both seasons. While, strain 541-C/3 ranked first in seed yield/plant, seed index, seed yield/feddan, oil yield/feddan and oil percentage. And strain 651 surpassed other genotypes in number of seeds/capsule and total fiber percentage. While there weren't differences between Strain 541-D/10 and Strain 541-C/3 in plant height, and stem diameter in both seasons. The data indicated that, fertilizer with nitrogen and zinc significantly affected all characters under study. Use of (300 ppm) zinc concentration resulted a significant increase in plant height, technical stem length, stem diameter, straw yield/plant as well as per feddan, seed yield/plant as well as per feddan, fiber yield/feddan and oil yield/fed in both seasons. Data showed that highest level of nitrogen gave the highest averages of all characters under study except number of capsules / plant in both seasons. The flax strain 651 ranked first in fiber percentage per the total cross section followed by S. 541- D/10 and S. 541- C/3 when applying zinc 300 ppm and 60 kg N/fed. It is clear also that, added highest zinc and nitrogen quantities promote maximum estimates of fiber and xylem percentages in comparison with the lowest amounts of both elements studied. While, pith percentage decreased with added highest zinc and nitrogen.

Key words: Flax, *Linum usitatissimum* L., Nitrogen, Zinc, Straw, Fibers, Seed, Oil, Flax Anatomy