PROTECTIVE EFFECT OF SOME DAIRY PRODUCTS ON FATTY LIVER DISEASE

BY

ZEINAB FAROUK ABD EL-SALAM MOHAMMED

B. Sc. Agri. Sci. (Dairy Science), Fac. Agric., Cairo Uni., 2001 M. Sc. Agri. Sci. (Dairy Science), Fac. Agric., Cairo Uni., 2011

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences

(Dairy Science)

Department of Dairy Science Faculty of Agriculture Cairo University EGYPT 2018 Name of Candidate: Zeinab Farouk Abd El-Salam Mohammed Degree: Ph.D. Title of Thesis: Protective Effect of Some Dairy Products on Fatty Liver Disease Supervisors: Dr. Mounir Mahmoud El-Abd

Dr. Mahmoud Abdel-Hamid Mohammed

Dr. Mohamed El-Sayed El-Demerdash

Department: Dairy Science

Approval: 12 / 12 / 2018

ABSTRACT

Fatty liver disease is one of the most dominant chronic liver diseases that disperses among children with different ages' and adults. Non-alcoholic fatty liver disease (NAFLD) includes a wide spectrum of liver injury stages: steatosis, steatohepatitis, fibrosis, cirrhosis and hepatocellular carcinoma. No drugs can be used to treat NAFLD; only some clinical recommendations must be followed for management of NAFLD. Functional foods including fermented dairy products provide various healthy benefits in addition to their higher nutritional value. Therefore, the current study aimed to evaluate the protective effect of fermented camel milk (FCM) on progression of NAFLD induced by a high fat diet and high fructose syrup (HFDHFr) in rats. The present study included evaluation the effect of microencapsulation of some probiotic strains combined with or without plant extract on their viability under simulated gastrointestinal conditions (SGC) as well as the properties of the resultant FCM during storage at 4°C for 21 days. In addition to, evaluate the effect of the resultant FCM on different biochemical markers of rats' serum that feeding on HFDHFr, as well as histological examination. Results indicated that maximum probiotic counts were observed in the presence of 10% of beetroot extract or 1% ginger extract in comparison to other concentrations. The highest survival rates were found in chitosan-coated beads after exposure to SGC. Significant differences were found concerning probiotic counts of different FCM. Regarding to the sensory evaluation, FCM containing microencapsulated probiotic with beetroot extract was the most favorable among all treatments. Moreover, oral administration of FCM containing microencapsulated probiotics with or without plant extract lowered liver enzymes, proinflammatory cytokines and oxidative stress markers as well as enhanced insulin sensitivity, lipid profile and antioxidants parameters in serum rats. Histopathological examination showed that the group that was given FCM containing microencapsulated probiotic with beetroot extract was the nearest to negative control group followed by the group of FCM containing microencapsulated probiotic with ginger extract. In contrast, oral administration of FCM containing microencapsulated probiotic with plant extract either beetroot or ginger showed markedly amelioration of NAFLD compared to HFDHFr group. Key Words: Microencapsulated probiotic, synbiotic, Ginger extract, Beetroot extract, Fermented camel milk, Fatty liver disease.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	
1. Effect of probiotic bacteria on fatty liver disease	8
2. Encapsulation of probiotic bacteria	12
3. Therapeutic properties of camel milk	20
4. Biological activity of plant extract	
a. Beetroot extract	25
b. Ginger extract	28
MATERIALS AND METHODS	
1. Materials	35
2. Methods of analyses	36
RESULTS AND DISCUSSION	
1. Viability of microencapsulated probiotics combined with and	
without plant extracts using different material agents under	
simulated gastrointestinal conditions.	
a. Evaluation the effect of beetroot or ginger aqueous extract on the	
growth of tested probiotic strains	47
b. Microencapsulation of some probiotic strains combined with	
beetroot or ginger aqueous extract using different material agents	50
c. In vitro studies	
(1) Survival of microencapsulated probiotic strains under simulated	
gastric juice (SGJ)	53
(2) Survival of microencapsulated probiotic strains under simulated	

small intestinal juice (SSIJ)	57
(3) Survival of microencapsulated probiotic strains under simulated	
large intestinal juice (SLIJ)	61
2. Stability and survival of microencapsulated probiotic combined	
with and without plant extracts using chitosan in fermented	
camel milk during cold storage	
a. pH of fermented camel milk	65
b. Microbiological analysis of fermented camel milk	67
c. Sensory evaluation of fermented camel milk	72
3. In vivo studies: Protective effect of synbiotic fermented camel	
milk on non-alcoholic fatty liver in rats	
a. Protective effect of camel milk with and without chitosan-coated	
beads containing different plant extract on final body weight, liver	
weight and liver index	76
b. Protective effect of camel milk with and without chitosan-coated	
beads containing different plant extract on some biochemical	
parameters	
(1) Insulin resistance and inflammatory markers	80
(2) Liver enzymes	86
(3) Lipid profile	88
(4) Oxidative stress markers	93
c. Protective effect of camel milk with and without chitosan-coated	
beads containing different plant extract on histological	
examination	96
SUMMARY	99

REFERENCES	105
ARABIC SUMMARY	٨_ ١

LIST OF ABBREVIATIONS

NAFLD	Nonalcoholic Fatty Liver Disease
BAE	Beetroot Aqueous Extract
GAE	Ginger Aqueous Extract
HFDHFr	High Fat Diet High Fructose Syrup
TNF-α	Tumor Necrosis Factor-α
NO	Nitric Oxide
IR	Insulin Resistance
ТС	Total Cholesterol
TG	Total Triglycerides
HDL	High Density Lipoprotein
LDL	Low Density Lipoprotein
VLDL	Very Low Density Lipoprotein
ALT	Alanine Aminotransferase
AST	Aspartate Aminotransferase
MDA	Malondialdehyde
GSH	Reduced Glutathione
GSSG	Oxidized Glutathione