ABSTRACT

The present study conducted to improve egg number of Dandarawi chickens by selection for high egg number produced during the first 90 days of production, estimate the correlated responses to selection for some laying productive traits and the phenotypic and genetic correlations between selected and correlated traits. It lasted for one generation (G_1) after establishing the base generation (G_0). Two Dandarawi lines were developed in this study in the G_1 : (S) line was selected for high egg number produced during the first 90 days of production and the randombred control line (C) was maintained as non-selected pedigreed.

The following criteria were measured or calculated: Age at first egg recorded in days for each hen (AFE), number of days needed to produce the first ten eggs and egg mass of the same period was recorded for each hen (ND₁₀ and EM₁₀), egg number (egg), egg weight (g) and egg mass (g) from maturity up to 90 and 120 days of egg production were recorded for each hen (EN, EW and EM). Number of eggs per clutch of each hen was calculated by dividing egg number by number of clutches (CS_{90, 120}), number of clutches (CN_{90, 120}), average length of pause duration the non-production days (PD_{90, 120}) and occurrence number of pauses (PN_{90, 120}) were recorded at the end of the first 90 and 120 days of production, the percentages of Albumen (Alb%), Yolk (Y%), Shell (Sh%),Yolk index (YI), Haugh unit (HU), egg shape index (SI) and Shell thickness (ShT). **The results showed that:**

- **1.** EN_{90} increased from 50.46 in the base generation to 63.13 eggs after one generation of family selection.
- **2.** The direct response was higher than the expected response (2.94 vs1.14eggs).
- **3.** The realized heritability for EN_{90} was 0.17 in the G_1 , whereas the heritability was 0.08 in the G_0 .
- **4.** The G1 pullets matured earlier than those of the G_0 by 5.64 days.
- **5.** The G_1 hens had lower periods of ND_{10} than G_0 hens (16.91 vs 17.69 days).
- 6. EM_{10} was obtained in the G_0 hens exceeded those of the G_1 hens by the difference of 8.91g. Concerning, EM_{90} and EM_{120} , the G_1 had significantly (p ≤ 0.05) higher values than the G_0 hens.
- 7. In general, G_1 had higher values of EM than the G_0 .
- 8. Eggs from G_0 hens showed significantly ($p \le 0.05$) higher SI% than those of the G_1 hens (79.91 vs 76.65%). The G_0 hens had significantly ($p \le 0.05$) thicker shells than those of the G_1 hens (0.40 vs 0.37mm).

- **9.** S line hens were earlier at AFE than those of C line by 3.90 days.
- **10.** The S line hens had lower ND_{10} than the C line hens (16.18 vs 19.25 days).
- **11.**The S line hens had significant ($p \le 0.05$) higher EN₁₂₀ than C line hens (79.38 vs 74.03 eggs)
- 12. The S line hens had significant ($p \le 0.05$) higher EW₁₀, EW₉₀ and EW₁₂₀ than the C line (36.54g vs 32.16g, 39.85 vs 35.37 and 40.36 vs 36.42g, respectively). In general, S line had higher values of EW than their C line.
- **13.**In general, S line had higher values of EM than their C line.
- **14.** In general selected line hens had longer CS_{90} or CS_{120} and lower PD_{90} or PD_{120} than the control line (3.42, and 3.12 vs 2.19 and 3.02 and 1.62 and 1.73 vs 2.69 and 2.22, respectively).
- **15.**Realized correlated responses was positive for EN_{120} (5.35 eggs).
- **16.**Selection for increase egg number during the first 90 days of laying caused improving egg weight and egg mass during the first 90 and 120 days of laying were 4.48, and 3.94 g in egg weight and 574.71 and 506.35 g in egg mass, respectively.
- **17.**Positive correlated responses, with CN (1.10 and 1.95), CS (0.51 and 0.10 egg) and PN (1.08 and 2.13) for 90 and 120 days, respectively were recorded however, realized correlated response was negative of PD_{90} and PD_{120} (-1.07 and -0.49 days).

Selection for egg number in the first 90 days in Dandarawi layers affected mainly egg number, egg weight, egg mass and clutch size and pause traits, while egg quality appeared not to be changed. This means that the selection for one generation is not enough to cause variation in these traits. It is advised to continue the direct selection program for egg number during the first 90 days to achieve more improvement in egg production traits. In conclusion, the results of the present study showed that family selection for egg number in the first 90 days of laying would be an effective criterion to make progress for all studied traits except YI.

CONTENTS

	Page No
TITLE	i
SUPERVISION COMMITTEE	ii
APPROVAL SHEET	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
CONTENTS	vi
LIST OF TABLES	ix
INTRODUCTION	1
REVIEW OF LITERATURE	3
1 Performance of the traits	3
1.1 Egg production-related traits	3
1. 2. Clutch and pausing traits	13
1.3. Egg quality traits	15
2. Genetic parameters	25
2.1. Estimates of heritability	25
2.1.1. Heritability estimates of egg production-related traits	27
2.1.2. Heritability estimates for cultch and pause traits	29
2.1.3. Heritability estimates of egg quality traits	33
2.2. Genetic and phenotypic correlation estimates	38
2.2.1. Correlations among different measurements of egg production traits	38
2.2.1.1. Correlations among egg number measurements	38
2.2.1.2. Correlations between egg number (EN) and age at first egg (AFE)	41
2.2.1.3. Genetic (rg) and phenotypic (rp) correlations estimates between egg number (EN) and each of egg weight (EW) and egg mass (EM)	41
2.2.2. Genetic (rg) and phenotypic (rp) correlations estimates between egg number (EN) and each clutch and pause traits	45
2.2.3. Genetic (rg) and phenotypic (rp) correlations estimates between egg number (EN) with each	
of egg quality traits	45
3. Selection and correlated responses	45
3.1. Response to selection	45
3.2. Correlated responses	49

MATERIALS AND METHODS	51
RESULTES AND DISCUSSION	62
1. Genetic description of the base population	62
1.1. Performance of the traits	62
1.1.1. Egg production-related traits	62
1.1.2. Clutch and pausing traits	65
1.1.3. Egg quality traits	65
1.2. Genetic parameters	67
1.2.1. Heritabilites	67
1.2.1.1. Heritability estimates of egg production-related traits	67
1.2.1.2. Heritability estimates for clutch and pause traits	68
1.2.1.3. Heritability estimates for egg quality traits	69
1.3. Expected direct genetic response to selection	69
1.3.1. Egg production-related traits	70
1.3.2. Clutch and pause traits	70
1.3.3. Egg quality traits	75
1.4. Genetic and phenotypic correlations	78
1.4.1. Genetic and phenotypic correlations between EN90 trait and each of egg production-related	70
traits	/ð
1.4.2. Genetic and phenotypic correlations between EN90 and clutch and pausing traits	80
1.4.3. Genetic and phenotypic correlations between EN90 and egg quality traits	81
2. Response to selection	84
2.1. Direct response	84
2.1.1. Direct response to selection for EN90	84
2.1.2. Selection differentials	84
2.1.3. Realized Heritability for the selected trait	84
2.2. Heritabilites of the correlated traits	86
2.2.1. Heritability estimates for egg production-related correlated traits	86
2.2.2. Heritability estimates for clutch and pause correlated traits	89
2.2.3. Heritability estimates for egg quality traits	91
2.3. Correlated responses	94
2.3.1. Generation effect	94
2.3.1.1. Egg production-related traits	94
2.3.1.2. Clutch and pausing traits	97
2.3.1.3. Egg quality traits	97
2.3.2. Line effect	101

2.3.2.1. Egg production-related traits	101
2.3.2.2. Clutch and pausing traits	104
2.3.2.3. Egg quality traits	104
2.4. Comparison between realized and expected correlated responses	108
2.4.1. Realized and expected correlated responses for egg production related- traits	108
2.4.2. Realized and expected correlated responses for clutch and pause traits	110
2.4.3. Realized and expected correlated responses for egg quality traits	110
2.5. Genetic correlation	113
2.5.1. Genetic correlation among different measurements of egg production-related traits	113
2.5.2. Genetic correlation estimates between the selected trait (EN90) and clutch and pausing traits	116
2.5.3. Genetic correlation estimates between the selected trait (EN90) and egg quality traits	118
2.6. Phenotypic correlations	121
2.6.1. Phenotypic correlation among different measurements of egg productions-related traits	121
2.6.2. Phenotypic correlation estimates between the selected trait (EN90) and each of clutch and pausing traits	123
2.6.3. Phenotypic correlation estimates between the selected trait (EN90) and egg quality traits	125
SUMMERY AND CONCLUSION	127
REFERENCES	133
ARABIC SUMMARY	149