Cairo University

Faculty of Veterinary Medicine

Department of Pathology

The therapeutic effect of camel mesenchymal stem cells on experimentally induced diabetes in rats.

Thesis
Presented by

Tahany Ahmed Ismail

(BVSc. 2009-for MVSc. in Pathology (General, Special and Postmortem)

Supervised by

Hala Mohamed Farouk El Miniawy

Professor of Pathology and Head of Pathology Department
Faculty of Veterinary Medicine
Cairo University

Kawkab Abd El Aziz Ahmed

Professor of Pathology Faculty of Veterinary Medicine Cairo University

Essam Mohamed Ibraheem

Chief researcher

Deputy Director of Animal health research
institute

Cairo University
Faculty of Veterinary Medicine
Department of Pathology

Supervision Sheet

Hala Mohamed Farouk El Miniawy

Professor of Pathology Head of Pathology Department Faculty of Veterinary Medicine Cairo University.

KawKab Abl Aziz Ahmed

Professor of Pathology Faculty of Veterinary Medicine Cairo University.

Essam Mohamed Ibraheem

Chief researcher Deputy Director of Animal health research institute. Cairo University
Faculty of Veterinary Medicine
Department of Pathology

Name: Tahany Ahmed Ismail

Date of Birth: 15/7/1987

Nationality: Egyptian

Degree: M. V. Sc

Specialization: pathology (General, Special, Postmortem)

Title of the thesis: The therapeutic effect of camel mesenchymal stem cells on

experimentally induced diabetes in rats.

Supervision:

Hala Mohamed Farouk El Miniawy, Professor of Pathology and Head of Pathology Department, Faculty of Veterinary Medicine, Cairo University.

Kawkab Abd El Aziz Ahmed, Professor of pathology, Faculty of veterinary medicine, Cairo University.

Essam Mohamed Ibraheem, Chief researcher, Deputy Director of Animal health research institute.

Abstract

This study was carried out to investigate the possible therapeutic effect of camel Wharton jelly mesenchymal stem cells (WJ-MSCs) on induced diabetes in rats and compare it with the therapeutic effect of rat bone marrow mesenchymal stem cells (BM-MSCs) on diabetic rats. The MSCs were successfully isolated from camel Wharton's jelly and rat bone marrow. Induction of diabetes in rats was initiated by streptozotocin (STZ 60 mg/kg). Labeled MSCs with pkh26 stain were injected intravenously by dose of (3 × 10⁶ cells) in the diabetic rats. Blood glucose and insulin levels were measured every two weeks as indicator for diabetes. Tissue samples from pancreas, liver and kidneys were collected for histopathological studies. Detection of insulin1, Smad-2 and PDX-1 genes in pancreatic tissues was done by quantitative RT-PCR. Serum was collected for liver and kidney function tests. The insulin level showed significant increase in

diabetic group treated with camel WJ-MSCs at 4 weeks post treatment (P.T) and reach near normal values at the end of experiment. But insulin level in diabetic group treated with rat BM-MSCs began to increase at 6 weeks (P.T) and still exhibit less values than control and camel WJ-MSCs groups at the end of experiment .The results of quantitative RT-PCR revealed significant increased in the three genes in Camel WJ-MSCs group but the Smad-2 gene in rat BM-MSCs group showed decreased values than in control and camel WJ-MSCs group. The histopathological results denote that the diabetic group treated with camel WJMSCs retains the cellular integrity of islets of Langerhans and pancreatic acini. Improvement of STZ side effects in the liver and kidneys was recorded supported by decrease of ALT, AST and Urea levels than diabetic group. In conclusion, camel WJ-MSCs possessed a good therapeutic effect against induced diabetes in rats than rat BM-MSCs. They reduced the side effects of STZ on the liver and kidneys. Their effects were more rapid than rat BM-MSCs.

Key words: Camel WJ-MSCs – rat BM-MSCs – STZ - diabetes.

CONTENTS

1. Introduction	
2. Review of literature	
2.1. Diabetes mellitus:	
2.2 Diabetes mellitus in animals	
2.3. Induction of diabetes mellitus	5
2.3.1 Chemical induction of diabetes mellitus	5
2.3.2 Animals used, routes and doses in induction of diabetes mellitus	
by STZ	7
2.4 The histopathological changes in animals with diabetes mellitus	9
In the pancreas.	9
In the liver	10
In the kidney	12
2.5 Treatment of Diabetes mellitus type1	13
2.6 Treatment of Diabetes mellitus type1 by stem cells	14
2.7 Transplantation of stem cells/ insulin-producing cells (IPCs)	16
2.8 Undifferentiated Mesenchymal stem cell for Treatment of Diabetes mellitus	
type1	16
3. Materials and methods	22
3.1 Isolation and propagation of camel umbilical cord derived MSCs	23
3.2. Isolation and propagation of BM- derived MSCs	23
3.3. Flow cytometric characterization and Identification of isolated stem	
cells	24
3.4. In vitro labeling of undifferentiated cells with PKH-26 fluorescent	
dye	24
3.5. Diabetes inducing drug.	24
3.6. Estimation of blood glucose and insulin level	25
3.7. Biochemical testes:	26
3.8. Histopathological studies	26
3.9. Gomori Aldehyde fuchsine special stain	26
3. 10. Quantitative RT-PCR for insulin1, Smad-2, PDX-1 genes in pancreatic tissues.	
	26

Statistical analysis	27
4. Results	28
4.1.Cell culture result.4.2. Analysis of MSCs based on cell surface marker expression for phenotypic	28
identification	29
4.3. Clinical signs and mortality rate	29
4.4. Assessment homing of labeled MSCs in rat pancreas	29
4.5. Follow up and assessment of blood glucose every 2 weeks along the experimental period.	32
4.6. Follow up and assessment of blood insulin every 2 weeks along the experi	mental
period	33
4.7. Biochemical analysis	35
8.8. Quantitative RT-PCR for insulin1, Smad-2 and PDX-1 genes in pancreatic issues.	39
4.9. Histopathological results	43
Pancreas	43
Aldehyde fuchsine special stain for pancreas	56
Liver	59
Kidneys	69
5. Discussion	81
6. Summary and conclusion	
7. References	96
الملخص العرب	1

List of abbreviations

ALT	Alanine aminotransferase
AST	Aspartate aminotransferase
BM-MNCs	Bone marrow mononuclear cell fraction
BM-MSCs	Bone marrow Mesenchymal stem cells
CD	Cluster differentiation
D	Diabetic
D+B	Diabetic+ Bone marrow MSCs
D+W	Diabetic+ Wharton's Jelly MSCs
DM	Diabetes mellitus
DMEM	Dulbecco's modified Eagle's medium
ESCs	Embryonic stem cells
FBS	Fetal bovine serum
IDDM	Insulin dependent diabetes mellitus
IDF	International Diabetes Federation's
IPCs	Insulin-producing cells
IPSCs	Induced pluripotent stem cells
MHC	Major histocompatibility complex
MSCs	Mesenchymal stem cells
NIDDM	Non-insulin dependent diabetes mellitus
NO	Nitric oxide
ОН	Hydrogen peroxide
P.I	Post induction
P.T	Post treatment
qRT-PCR	quantitative Real-time polymerase chain reaction
STZ	Streptozotocin
T h	T helper cells
T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus
TGF	Transforming growth factor
UC-PSCs	Umbilical cord primitive stromal cells
WJ-MSCs	Wharton's Jelly Mesenchymal stem cells
β-cells	Beta cells