

BIOCHEMICAL STUDIES ON REDUCTION OF PHENOLIC POLLUTANTS IN INDUSTRIAL WASTE WATER BY USING DIFFERENT SUBSTRATES AS ADSORBENTS

By

Howida Magdy Bahgat (B.Sc., Biochemistry, Ain Shams University, 2001)

ATHESIS

Submitted in Partial Fulfillment for the Requirements of the M.Sc. Degree in Organic Chemistry

Department of chemistry Faculty of science Menoufia University EGYPT

2016

SUPERVISION SHEET

BIOCHEMICAL STUDIES ON REDUCTION OF PHENOLIC POLLUTANTS IN INDUSTRIAL WASTE WATER BY USING DIFFERENT SUBSTRATES AS ADSORBENTS

AThesis

Submitted in Partial Fulfillment for the Requirements Of the M.Sc. Degree in Organic Chemistry

By

Howida Magdy Bahgat

(B.Sc., Biochemistry, Ain Shams University, 2001)

SUPERVISORS

Prof. Dr. Ibrahim El-Tantawy El-Sayed

Professor of organic chemistry Faculty of science, Menoufia University

Prof. Dr. Ashraf Hussein Fahmy

Professor of Genetic Engineering Genetic Engineering Research Institute Agricultural Research Centre, Giza

Dr. Shreen Samy Ahmed

Assistant Professor of Biochemistry Soil, Water and Environment Research Institute, Agricultural Research Centre, Giza

APPROVAL SHEET

BIOCHEMICAL STUDIES ON REDUCTION OF PHENOLIC POLLUTANTS IN INDUSTRIAL WASTE WATER BY USING DIFFERENT SUBSTRATES AS ADSORBENTS

AThesis

Submitted in Partial Fulfillment for the Requirements Of the M.Sc. Degree in Organic Chemistry

By

Howida Magdy Bahgat

(B.Sc., Biochemistry, Ain Shams University, 2001)

APPROVAL COMMTTEE

Prof. Dr. Ali Abd-Elmaboud Ali

Professor of organic chemistry, Faculty of Science, Banha University

Prof. Dr. Khaled Sabry AbdAlla.

Agricultural Genetic Engineering Research Institute, Professor of Biotechnology, Research Centre, Giza

Prof. Dr. Ibrahim, El-Tantawy El-Sayed

Professor of organic chemistry, Faculty of Science, Minufiya University

Abstract

Today, the world is facing the problem of environmental pollution of human needs requires development in life activities. Health and environmental risks of pollution have become apparent throughout the world over the past several decades. Chemical industries in particular, have created sever problem, since they release thousands of chemicals to the environment. The present study was planned to remove the environmental pollutant (phenol). The study was focused in many categories:

- 1. Determination of phenol in different samples of water as fresh water (River Nile) and industrial wastewater (sugar factory).
- 2. Determination of phenol in soil and plant samples that were collected around the investigated study.
- 3. Remediation of water polluted with phenol using some different natural materials (rice strew, orange peels, and zeolite) under different condition (pH, temperature, time, and dose of adsorbents).
- 4. Removal the phenol from vinasse using some different natural materials under the best conditions that have been studied previously.

CONTENTS

	Page
SUMMARY	
1.INTRODUCTION.	1
2. REVIEWOF LITERATURE	3
2.1. Phenols Structure	3
2.2. A Phenolic Survey in Soil, Water and plants	4
2.3. Phenolics as organic pollutants	7
2.4. Health Effects of phenolics compounds	8
2.5. Methods Used to Remove Phenols from Industrial Wastewaters	8
2.6. Phenol Adsorption on Different Substrate Surfaces	9
2.7. Some of the important adsorbents used in adsorption of	
phenol	10
From waste	10
2.7.2. Phenol Adsorption on naturally occurring materials	18
3. MATERIALS AND METHODS.	23
3.1. Materials	23
3.1.1. Industrial wastewater	23
3.1.2. Nile water	23
3.1.3. Factories waste	23
3.1.5. Plant sample	23
3.1.6. Adsorbent materials	23
3.1.7. Chemicals and apparatus	24
3.2. Methods	

3.2.2. Removal of phenol from aqueous solution by adsorption	
Studies	25
3.2.3. Determination of total phenols	26
3.2.4. Identification and Determination of Phenolic Compounds by HPLC	26
4. RESULTS AND DISCUSSION	
4.1. Phenol Contents in Raw Materials	
4.2. Phenol adsorption from polluted water	
4.3. Phenol adsorption on activated rice strew waste	
4.3.1. FTIR Spectra of rice strew	
4.3.2. Effect of Initial pH	32
4.3.3. Effect of contact time	37
4.3.4. Effect of Rice strew Dose	38
4.3.5. Effect of Temperature	39
4.3.6. Langmuir adsorption of phenol from aqueous solutions	40
by rice strew	
4.4.1. FTIR spectra of orange peels	
4.4.2. Effect of Initial pH.	
4.4.3. Effect of contact time	
4.4.4. Effect of orange peels dose	47
4.4.5. Effect of temperature	48
4.4.6. Langmuir adsorption of phenol from aqueous solutions by	
orange peels	
4.5. Phenol adsorption on zeolite	
4.5.1. FTIR Spectra of zeolite	
4.5.2. Effect of initial pH on phenol adsorption	
4.5.3. Effect of contact time.	
4.5.4. Effect of Zeolite dose	
4.5.5. Effect of temperature on phenol adsorption	58

4.5.6. Langmuir adsorption of phenol from aqueous solutions by zeolite			
4.6. Natural material efficiency for removal phenol	61		
4.6.1 Remediation of industrial wastewater using natural			
Materials	64		
5. REFERENCES	68		
6. LIST OF THE PUBLISHER			
Arabic Summary (Back-right side)			

LIST OF TABLES

No.	. Title	Page
1.	Phenol Contents in collected raw material sample	27
2.	Adsorption % of phenol on rice strew under	
	different condition as pH, Contact Time, Temperature	
	and adsorbent dose)	31
3.	Adsorption % of phenol on orange peels under	
	different condition as (pH, Contact Time,	
	Temperature and adsorbent dose)	42
4.	Adsorption % of phenol on zeolite under different	
	Condition as (pH, Contact Time, Temperature	
	and adsorbent dose)	51
5 .	Natural material efficiency for removal phenol from	
	vinasse	64

LIST OF FIGURES

No.	. Title	Page
1.	FTIR spectrum of raw rice strew	32
2.	Effect of pH on phenol removal by rice strew	
	with different weight at 25 °C.	34
3.	Effect of pH on phenol removal by rice strew	
	with different weight at 35 °C.	35
4 .	Effect of pH on phenol removal by rice strew	
	With different weight at 45 °C	36
5.	The effect of contact time on the removal	
	of phenol by rice strew	37
6.	The effect of Rice strew Dose on the removal	
	of phenol by rice strew	38
7.	The effect of Temperature on the removal of	
	phenol by rice strew	39
8 .	Langmuir adsorption of phenol from aqueous	
	solutions by rice strew at different times	41
9.	FTIR spectrum of orange peels	43
10 .	Effect of pH on phenol removal % by orange	
	peels with different weight at 25 °C	44
11.	Effect of pH on phenol removal % by orange	
	peels with different weight at 35 °C	45
12 .	Effect of pH on phenol removal % by orange	
	peels with different weight at 45 °C	46
13.	The effect of contact time on the removal of phenol	
	by orange peels.	47

14 .	The effect of orange peels Dose on the removal of phenol	48
15 .	The effect of Temperature on the removal of phenol by	
	orange peels	49
16 .	Langmuir adsorption of phenol from aqueous solutions	
	by orange peels at different times	50
17 .	FTIR spectrum of zeolite	52
18 .	Effect of pH on phenol removal % by zeolite with	
	different weight at25 °C	54
19 .	Effect of pH on phenol removal % by zeolite with	
	different weight at 35 °C	55
20 .	Effect of pH on phenol removal % by zeolite with	
	Different weight at 45 °C	.56
21. 22.	The effect of contact time on the removal of phenol by zeolite The effect of zeolite Dose on the removal of phenol	
23 .	The effect of Temperature on the removal of phenol by zeolite	58
24 .	Langmuir adsorption of phenol from aqueous solutions	
	by zeolite at different times	
25 .	Natural material efficiency for removal of phenol	61
26 .	Natural material efficiency for removal of phenol from vinasse	65
27 .	HPLC analysis of phenolic compound in vinasses before and	
	after remediation with different natural materials	66