

POSSIBLE EFFECTS OF CUCUMBER AND SNAKE GOURD FOR HYPOGLYCEMIA OF MALE ALBINO RATS

By

Dalia Mohamed Abd-Allah Hassan Amer

B.Sc. Home Economics (Nutrition and Food Science) Faculty of Home Economics, Al-Azhar University (2007)

M.Sc. Nutrition and Food Science, Nutrition & Food Science Dept., Faculty of Home Economics, Menoufia University (2011)

Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of Philosophy Doctor (Ph.D.) in Home Economics.

(Nutrition and Food Science)

Supervisors

Prof.Dr.

Fatma El -Zahraa Amin El-Sherif

Prof. of Nutrition and Food Science, EX-Dean - Faculty of Home Economics, Menoufia University.

Prof. Dr.

Emad Mohamed A. El- kholie

Prof. of Nutrition and Food Science, Faculty of Home Economics, Menoufia University.

Prof. Dr.

Hala Mohamed Zaki Ali

Prof. of Food Technology, EX-Dean of Experimental Kitchen Research Unit, Food Tech. Res. Inst., Agric. Res. Center. Giza.

2016

SUPERVISION

The researcher: Dalia Mohamed Abd Allah Hassan

Amer.

Title of thesis: Possible Effects of Cucumber and Snake

Gourd for Hypoglycemia of Male Albino Rat

Degree: Ph.D. Degree in Home Economics (Nutrition and

Food Science)

This thesis supervised by:

Supervisors	Profession	Signature
Prof. Dr.Fatma El -Zahraa Amin El- Sherif	Prof. of Nutrition and Food Science, EX-Dean - Faculty of Home Economics, Menoufia University	
Prof. Dr. Emad Mohamed A. El- kholie	Prof. of Nutrition and Food Science, Faculty of Home Economics, Menoufia University	
Prof. Dr. Hala Mohamed Zaki Ali	Prof.of Food Technology, EX-Dean of Experimental Kitchen Research Unit, Food Tech. Res. Inst., Agric.Res.Center.Giza.	

Date: / / 2016 Committee in charge

APPROVAL SHEET

The researcher: Dalia Mohamed Abd Allah Hassan Amer

Title of thesis: Possible Effects of Cucumber and Snake Gourd

for Hypoglycemia of Male Albino Rats

Degree: Ph.D. Degree in Home Economics (Nutrition and Food

Science)

This thesis has been approved by:

Supervisors	Profession	Signature
Prof .Dr. Mohamed Samir Al-Dashlouty	Prof. of Nutrition and Food Science, EX-Dean - Faculty of Home Economics, Menoufia University	
Prof. Dr. Fatma El -Zahraa Amin El- Sherif	Prof. of Nutrition and Food Science, EX-Dean - Faculty of Home Economics, Menoufia University	
Prof. Dr. Samir Mohamed Ahmed	Prof. of Human Nutrition, Head of Department Home Economics, Faculty of Agriculture, Alexandria University	
Prof. Dr. Emad Mohamed A. El- kholie	Prof. of Nutrition and Food Science, Faculty of Home Economics, Menoufia University	

Date: / / 2016 Committee in charge

LIST OF CONTENTS

CONTENTS	PAGE
List of abbreviations	I:IV
List of tables	V
List of figures	VI : VII
List of photo	X : XIII
1. Introduction	1:6
2. Aim of Investigation	7
3. Review of Literature	8:57
Diabetes mellitus	8
The prevalence of diabetes	8
Definition of diabetes	9
Development of diabetes	10
Epidemiology	10
Classification of diabetes mellitus	11
Type 1 diabetes mellitus	13
Type 2 diabetes mellitus	13
Gestational diabetes mellitus (GDM)	15
Other specific type	16
Symptoms	17
Clinical features of diabetes mellitus	17

Clinical Features of Type I diabetes	18
Clinical Features of Type II diabetes	18
Diagnosis of both types diabetes mellitus	18
Complications of diabetes	19
Medical Nutrition therapy for individuals with type II diabetes mellitus	22
Treatment of diabetes	22
Prevention of diabetes mellitus	23
Cucumber	25
Definition of cucumber	25
Nutritive/Medicinal properties of cucumber	26
Chemical composition of cucumber	29
Hypoglycemic and hypolipidemic activity of cucumber	30
Hypolipidemic activity of cucumber	30
Anti-diabetic activity of cucumber	31
Antioxidant activity of cucumber	35
Hepatoprotective activity of cucumber	36
Anticancer activity of cucumber	37
Antimicrobial activity of cucumber	38
Skin-whitening and antiwrinkle activity	39
Antiulcerogenic activity	40
Antiatherogenic activity	40
Anthelminthic activity	41
Traditional medicinal uses	41
Snake gourd	42
Definition of snake gourd	43
Nutritive/Medicinal Properties of snake gourd	44
Other phytochemicals of snake gourd	45
Antioxidant activity of snake gourd	45
Anti-diabetic activity of snake gourd	46
Anti-toxicity activity of snake gourd	49
Hepatoprotective activity of snake gourd	50

Anti-inflammatory activity of snake gourd	51
Anticancer activity of snake gourd	52
Gastroprotective Activity of snake gourd	54
Larvicidal activity of snake gourd	54
Antifertility activity of snake gourd	54
Antimicrobial and nematicidal activity of snake gourd	55
Ribosome-Inactivating protein and associated activities of snake gourd	56
Traditional medicinal uses of snake gourd	56
Other uses	57
4. Material and Methods	58 : 67
Material	58
The used plants	58
Rats	58
Used chemicals	59
Methods	59
Preparation of plant and its parts	59
Biological experiments	59
Basel diet composition of tested rats	59
Chemical analysis of tested plant parts	61
Preparation of diabetic rats (alloxon):	61
Grouping and feeding of rats	62
Biological evaluation	63
Blood sampling	64
Organs weight	64
Biochemical analysis	64
Determination of fasting blood glucose	64
Determination of fasting lipids profile	64
Determination of liver function tests	65
Determination of kidney function tests	66
Histopathological examination	66

Statistical analyses	67
5. Results and Discussion	68 : 165
Phenolic compound of cucumber parts (ppm)	68
Phenolic compound of snake gourd parts (ppm)	70
Flavonoids compound of cucumber parts (ppm):	72
Flavonoids compound of snake gourd parts (ppm):	73
Biological changes	75
Effect of different parts of cucumber and snake gourd on body weight gain (BWG)(g), feed efficiency ratio (FER) and feed intake (FI)(g/d) of alloxan diabetes rats:	75
a. Body weight gain (BWG)(g):	75
b. Feed intake (F.I):	78
c. Food efficiency ratio (FER)	81
Effect of different parts of cucumber and snake gourd (seeds, leaves, whole fruits, fruits Without peel and peel) on relative organ weight (ROW) (g/100g) (liver, kidney spleen, heart, lungs and pancreas) for negative control, positive control and other different groups of diabetes rats	86
a. Relative weight of liver	86
b. Relative weight of heart	89

c. Relative weight of kidneys	92
d. Relative weight of lungs	95
e. Relative weight of spleen	98
f. Relative weight of pancreas	101
Biochemical Analysis	105
Effect of different parts of cucumber and snake gourd on glucose of alloxan diabetes rats	105
Effect of different parts of cucumber and snake gourd on kidney function (serum creatinine, serum urea and serum uric acid) (mg/dl) of alloxan diabetes rats	111
a. Serum creatinine (mg/dl)	111
b. Serum urea (mg/dl)	114
c. Serum uric acid (mg/dl)	117
Effect of different parts of cucumber and snake gourd (seeds, leaves, whole fruits, fruits without peels and peels) as 7.5% on liver function for alloxan diabetes rats	121
a. Serum glutamic oxaloacetic transaminase (G.O.T) or (AST) enzyme (U/L)	121
b. Serum glutamic pyruvic transaminase (G.P.T) or (ALT) enzyme (U/L)	124

c. Serum alkaline phsphatase (A.L.P) enzyme (U/L)	127
Effect of different parts of cucumber and snake gourd (seeds, leaves, whole fruits, fruits without peel and peel) as 7.5% on serum total cholesterol (T.C), triglycerides (T.G) (mg/dl), serum high density lipoprotein(H.D.L.C) (mg/dl), serum very low density lipoprotein (VLDL-C) (mg/dl), serum low density lipoprotein (LDL-C) (mg/dl) for alloxan diabetes rats	133
a.Serum total cholesterol (T.C)mg/dl	133
b. Triglycerides (T.G) (mg/dl)	136
c. Serum high density lipoprotein (H.D.L.C) (mg/dl)	139
d. Serum low density lipoprotein (LDL-C) (mg/dl)	142
e. Serum very low density lipoprotein (VLDL-C) (mg/dl)	145
f. Atherogenic index (AI) (VLDL+LDL/HDL) ratio mg/dl	148
Results of histopathological examination(kidney&liver)	153
6. English Summary	166:173
7. Recommendations	174:175
8. References	176 : 198
9. Arabic Summary	18:1

LIST OF ABBREVIATIONS

AET	Aqueous Extract Of Trichosanthes cucumerina
AI	Atherogenic Index
AIDRs	Alloxan Induced Diabetic Rats
ALP	Alkaline Phosphatase
ALT	Alanine Amino Transferase
APP	Amyloid Precursor Protein
AR	Atherogenic Ratio
AST	Asparate Aminotransferase
B.Wt.	Body Weight
BGL	Blood Glucose Level
ВНА	Butylated Hydroxyl Anisole
BW	Body Weight
BWG	Body Weight Gain
CAT	Catalase
CBC	Complete Blood Count
CC	Creatinine Clearance
CEE	Cold Ethanolic Extracts
Control(+ve)	Control Positive
Control(-ve)	Control Negative
DKA	Diabetic Ketoacidosis
DL	Deciliter
DM	Diabetes Mellitus
FBS	Fasting Blood Glucose
FER	Feed Efficiency Ratio
FI	Feed Intake
Fig.	Figure

FRAP	Ferric Reducing Antioxidant Power
g	Gram
GA	Gallic Acid
GDM	Gestational Diabetes-Mellitus
GOT	Glutamate Oxaloacetate Transaminase
GPT	Glutamic Pyruvic Transaminas Enzyme
GPx	Glutathione Peroxidase
GRD	Glutathione Reductase
Hb	Hemoglobin
HDL-C	High Density Lipoprotein Cholesterol
HMG CoA reductase	3-Hydroxy-3-Methyl-Glutaryl-Coa Reductase
HPLC	High-Performance Liquid Chromatography
HWE	Hot Water Extract
IDDM	Insulin Dependent Diabetes Mellitus
IU	International Unit
Kg	Kilogram
kJ	Kilojoule
LCAT	Lecithin Cholesterol Acyltransferase
LDL-C	Low Density Lipoprotein Cholesterol
LPO	Lipid Peroxidase
M mole	Milli Mole
mcg	Micrograms
MCH	Mean Corpuscular Haemoglobin
MCHC	Mean Corpuscular Haemoglobin
IVICIIC	Concentration
MCV	Mean Cell Volume
Mg	Microgram

mg/dl	Milligram Per Deciliter
MI	Milli Liter
ml	Milli Letre
N	Normal
NIDDM	Non-Insulin Dependent Diabetes Mellitus
nM	Nanometre
NO	Nitric Oxide
PCV	Packed Cell Volume /Haematocrit Hct
PL	Pyloric Ligation
ppm	Parts Per Million
RBC	Red Blood Cells
RIP	Ribosome-Inactivating Protein
ROS	Reactive Oxgen Species
SCL	Serum Creatinine Level
SD	Standard Deviation
SOD	Superoxide Dismutase
STZ	Streptozotocin
SUL	Serum Urea Level
T.C	Total Cholesterol
T.G	Triglycerides
U/L	Units Per Litre
UC	Urea Clearance
UCL	Urine Creatinine Level
UGL	Urine Glucose Level
UUL	Urine Urea Level
UV	Ultraviolet
VLDL	Very Low Density Lipoprotein

WBC	White Blood Cells
WIS	Water Immersion Stress

LIST OF TABLES

TABLES	PAGE
Table (A): India Status at 2030 as Per WHO	11
Table (B): Etiologic Classification of Diabetes Mellitus	12
Table (C): Some causes of insulin resistance	14
Table (D): Clinical characteristics of patients with Type 1 and Type 2 diabetes mellitus	15
Table (E): Diagnosis of GDM with a 100 g glucose load	15
Table (F): The composition of basal diet (compounds amount)	60
Table (G): Composition of salt mixture	60
Table (H): The composition of vitamin mixture (vitamin amount per 100g)	61
Table (1): Phenolic compounds (ppm) of cucumber parts (seeds, leaves, whole fruits, fruits with out peels and peels of fruits)	69
Table (2 Phenolic compounds (ppm) of snake gourd parts (seeds, leaves, whole fruits, fruits without peels, peels of fruits)	70
Table (3): Flavonoids compounds (ppm) of cucumber parts (seeds, leaves, whole fruits, fruits without peels, peels of fruits)	72
Table (4): Flavonoids compounds (ppm) of snake gourd parts (seeds, leaves, whole fruits, fruits without peels, peels of fruits)	73
Table (5): Effect of different parts of cucumber and snake gourd on body weight gain (BWG) (g) of alloxan diabetes rats	76
Table (6): Effect of different parts of cucumber and snake gourd on Feed intake (F.I)	79

TABLES	PAGE
(g/day/rat) of alloxan diabetes rats	
Table (7): Effect of different parts of cucumber and snake on feed efficiency ratio (FER) of alloxan diabetes rats	82
Table (8): Effect of different parts of cucumber and snake (seeds leaves, whole fruits, fruits without peel and peel) as 7.5% on relative weight of liver (g) of diabetes rats	87
Table (9): Effect of different parts of cucumber and snake (seeds, leaves, whole fruits, fruits without peel and peel) as 7.5% on relative weight of heart (g) of diabetes rats	90
Table (10): Effect of different parts of cucumber and snake (seeds, leaves, whole fruits, fruits without peel and peel) as 7.5% on relative weight of kidney (g) of diabetes rats	93
Table (11): effect of Cucumber, Snake gourd, seeds, leaves, whole fruits, fruits without peel and peel as 7.5% on relative weight of lungs (g) of diabetes rats.	96
Table (12): Effect of different parts of cucumber and snake (seeds, leaves, whole fruits, fruits without peel and peel) as 7.5% on relative weight of spleen (g) of diabetes rats	99
Table (13): Effect of different parts of cucumber and snake (seeds, leaves, whole fruits, fruits without peel and peel) as 7.5% on relative weight of pancreas (g) of diabetes rats	102
Table (14): Effect of different parts of cucumber and snake (seeds, leaves, whole fruits, fruits without peel and peel) as 7.5% on glucose (mg/dl) of diabetes rats	106
Table (15): Effect of different parts of cucumber and snake (seeds, leaves, whole fruits, fruits without peel and peel) as 7.5% on Serum Creatinine (mg/dl) of alloxan diabetes rats	112

TABLES	PAGE
Table (16): Effect of different parts of cucumber and snake (seeds, leaves, whole	115
fruits, fruits without peel and peel) as 7.5% on serum urea (mg/dl) of	113
alloxan diabetes rats	
Table (17): Effect of different parts of cucumber and snake (seeds, leaves, whole	118
fruits, fruits without peel and peel) as 7.5% on serum uric acid (mg/dl)	110
of alloxan diabetes rats	
Table (18): Effect of different parts of cucumber and snake (seeds, leaves, whole	122
fruits, fruits without peel and peel) as 7.5% on serum glutamic	122
oxaloacetic transaminase(G.O.T) or (AST) enzyme(U/L) of alloxan	
diabetes rats	
Table (19): Effect of different parts of cucumber and snake (seeds, leaves, whole	125
fruits, fruits without peel and peel) as 7.5% on serum glutamic	123
pyruvic transaminase(G.P.T) or (ALT) enzyme(U/L) of alloxan	
diabetes rats	
Table (20): Effect of different parts of cucumber and snake (seeds, leaves, whole	128
fruits, fruits without peel and peel) as 7.5% on serum alkaline	120
phosphates (A.L.P) enzyme (U/L) of alloxan diabetes rats	
phosphates (11.2.11) enzyme (e/2) of unoxun diabetes ratis	
Table (21): Effect of different parts of cucumber and snake (seeds, leaves, whole	134
fruits, fruits without peel and peel) as 7.5% on serum total cholesterol	
(T.C) for alloxan diabetes rats	
Table (22): Effect of different parts of cucumber and snake (seeds, leaves, whole	137
fruits, fruits without peel and peel) as 7.5% on triglycerides (T.G)	13/
(mg/dl) for alloxan diabetes rats	
(IIIg/ui) for anoxali ulabetes fats	
Table (23): Effect of different parts of cucumber and snake (seeds, leaves, whole	140
fruits, fruits without peel and peel) as 7.5% on serum high density	
lipoprotein (H.D.L.C) (mg/dl) for alloxan diabetes rats	
Table (24): Effect of different parts of cucumber and snake (seeds, leaves, whole	143

TABLES	PAGE
fruits, fruits without peel and peel) as 7.5% on serum low density	
lipoprotein (LDL-C) (mg/dl) for alloxan diabetes rats	
Table (25): Effect of different parts of cucumber and snake (seeds, leaves, whole fruits, fruits without peel and peel) as 7.5% on serum very low density lipoprotein (VLDL-C) (mg/dl) for alloxan diabetes rats	146
Table (26): Effect of different parts of cucumber and snake (seeds, leaves, whole fruits, fruits without peel and peel) as 7.5% on atherogenic index (A.I.) (VLDL+LDL/HDL) ratio for alloxan diabetes rats	149

LIST OF FIGURES

FIGURES	PAGE
Fig. (1): Effect of different parts of cucumber and snake on body	77
weight gain (BWG) (g) of alloxan diabetes rats	
Fig. (2): Effect of different parts of cucumber and snake on Food	80
intake (F.I) (g/day/rat) of alloxan diabetes rats	
Fig. (3): Effect of different parts of cucumber and snake on food	83
efficiency ratio (FER) of alloxan diabetes rats	
Fig. (4): Effect of different parts of cucumber and snake (seeds,	88
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on relative weight of liver (g) of diabetes rats	
Fig. (5): Effect of different parts of cucumber and snake (seeds,	91
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on relative weight of heart (g) of diabetes rats	
Fig. (6): Effect of different parts of cucumber and snake (seeds,	94
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on relative weight of kidney (g) of diabetes rats	
Fig. (7): Effect of different parts of cucumber and snake (seeds,	97
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on relative weight of lungs (g) of diabetes rats	
Fig. (8): Effect of different parts of cucumber and snake (seeds,	100
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on relative weight of spleen (g) of diabetes rats	
Fig. (9): Effect of different parts of cucumber and snake (seeds,	103
leaves, whole fruits, fruits without peel and peel) as 7.5%	

FIGURES	PAGE
on relative weight of pancreas (g) of diabetes rats	
Fig. (10): Effect of different parts of cucumber and snake (seeds,	107
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on glucose (mg/dl) of diabetes rats	
Fig. (11): Effect of different parts of cucumber and snake (seeds,	113
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on Serum Creatinine (mg/dl) of alloxan diabetes rats	
Fig. (12): Effect of different parts of cucumber and snake (seeds,	116
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on serum Urea (mg/dl) of alloxan diabetes rats	
Fig. (13): Effect of different parts of cucumber and snake (seeds,	119
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on serum Uric acid (mg/dl) of alloxan diabetes rats	
Fig. (14): Effect of different parts of cucumber and snake (seeds,	123
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on serum glotamic oxaloacetic transaminase(G.O.T) or	
(AST) enzyme(U/L) of alloxan diabetes rats	
Fig. (15): Effect of different parts of cucumber and snake (seeds,	126
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on serum glotamic pyruvic transaminase(G.P.T) or (ALT)	
enzyme(U/L) of alloxan diabetes rats	
Fig. (16): Effect of different parts of cucumber and snake (seeds,	129
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on serum alkaline phsphatase (A.L.P) enzyme (U/L) of	
alloxan diabetes rats	

FIGURES	PAGE
Fig. (17): Effect of different parts of cucumber and snake (seeds,	135
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on serum total cholesterol (T.C) for alloxan diabetes rats	
Fig. (18): Effect of different parts of cucumber and snake (seeds,	138
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on triglycerides (T.G) (mg/dl) for alloxan diabetes rats	
Fig. (19): Effect of different parts of cucumber and snake (seeds,	141
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on serum high density lipoprotein (H.D.L.C) (mg/dl) for	
alloxan diabetes rats	
Fig. (20): Effect of different parts of cucumber and snake (seeds,	144
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on serum low density lipoprotein (LDL-C) (mg/dl) for	
alloxan diabetes rats	
Fig. (21): Effect of different parts of cucumber and snake (seeds,	147
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on serum very low density lipoprotein (VLDL-C) (mg/dl)	
for alloxan diabetes rats	
Fig. (22): Effect of different parts of cucumber and snake (seeds,	150
leaves, whole fruits, fruits without peel and peel) as 7.5%	
on atherogenic index (A.I.) (VLDL+LDL/HDL) ratio for	
alloxan diabetes rats	

LIST OF PHOTOS

PHOTOS	PAGE
Photo (1): Kidney of control (-) rat showing normal renal tubules and glomerular histological structure (H&E X400).	157
Photo (2): Liver of control (-) rat showing normal histological structure (H&E X200).	157
Photo (3): Kidney of (Group 2); alloxan treated rat showing congestion of the glomerular and interstitial blood vessels with wide spread degenerative and necrotic changes among the renal tubular epithelial linings (H&E X200).	157
Photo (4): Kidney of (Group 2); alloxan treated rat showing congestion of the glomerular blood vessels, destruction of the glomerular tuft (arrow), hypercellularity (arrow head) and focal hyalinization of glomerular tuft (H&E X400).	158
Photo (5) : Liver of (Group 2); alloxan treated rat showing congestion of central vein, disorganization of the hepatic cords, granular and vacuolar degeneration and many necrotic hepatocytes (arrow) (H&E X400).	158
Photo (6): Portal area in liver of (Group 2); alloxan treated rat showing inflammatory cells infiltration and widespread necrosis and destruction of the hepatocytes (H&E X400).	158
Photo (7): Kidney of (Group 3) diabetic rat treated with seeds of cucumber fruit showing degeneration and necrosis of the renal tubular epithelial linings with congested glomerular and intertubular blood vessel (H&E X200).	159

PHOTOS	PAGE
Photo (8) : Liver of (Group 3); diabetic rat treated with seeds of cucumber fruit showing congestion of the central vein and sinusoids with marked degeneration and necrosis of the hepatocytes (H&E X400).	159
Photo (9): Kidney of (Group 4); diabetic rat treated with leaves of cucumber fruit showing atrophy of some glomerular tuft (arrow) and marked degeneration and necrosis of the renal tubular epithelial linings (H&E X200).	159
Photo (10): Portal area of (Group 4); liver of diabetic rat treated with leaves of cucumber fruit showing bile duct proliferation with newly formed bile ducteoles and mononuclear inflammatory cells infiltration (H&E X400).	160
Photo (11): Kidney of (Group 5); diabetic rat treated with the whole cucumber fruit showing mild congestion of glomerular blood vessel, few necrotic cells and regenerated tubule (arrow) (H&E X400).	160
Photo (12): Liver of (Group 5); diabetic rat treated with whole cucumber fruit showing congestion of the central vein, mild degeneration of the hepatocytes and few necrotic cells (H&E X400).	160
Photo (13): Kidney of (Group 6); diabetic rat treated with cucumber fruit without peel showing congested interstitial blood vessel (arrow) and moderate degenerative and necrotic changes among the renal tubular epithelial linings (H&E X200).	161
Photo (14): Liver of (Group 6); diabetic rat treated with cucumber fruit without peel showing periacinar degenerative and necrotic changes of the hepatocytes (H&E X400).	161
Photo (15): Kidney of (Group 7); diabetic rat treated with the cucumber peel of	161

PHOTOS	PAGE
whole fruit showing mild degeneration of the renal epithelium and regenerated tubules (arrow) (H&E X400).	
Photo (16): Liver of (Group 7); diabetic rat treated with the peel of whole cucumber fruit showing marked restoration of the hepatic cells, only few granular degenerated and necrotic cells (H&E X400).	162
Photo (17): Kidney of (Group 8); diabetic rat treated with the seeds of snake gourd fruit showing congestion of the renal blood vessels, presence of pockets of hemorrhage and granular degeneration of the tubular epithelial cells (H&E X400).	162
Photo (18): Portal area of liver of (Group 8); diabetic rat treated with the seeds of snake gourd fruit showing congested portal vessel and mild inflammatory cells infiltration and mild proliferation of the bile duct epithelium (H&E X400).	162
Photo (19): Kidney of (Group 9); diabetic rat treated with the leaves of snake gourd fruit showing mild swelling and granular degeneration of the renal tubular epithelium, mild congestion of the glomerular capillaries and regenerated tubule (arrow) (H&E X400).	163
Photo (20) : Liver of (Group 9); diabetic rat treated with the leaves of snake gourd fruit showing mild granular and vacuolar degeneration of the hepatocytes and scattered necrotic cells (H&E X400).	163
Photo (21): Kidney of (Group 10); diabetic rat treated with the whole snake gourd fruit showing congestion of the interstitial and glomerular blood vessels, granular degeneration of the tubular epithelial linings and few necrotic cells (arrow), notice the granular cast in the lumen of some tubules (H&E X400).	163
Photo (22): Liver of (Group 10); diabetic rat treated with the whole snake gourd	164

PHOTOS	PAGE
fruit showing dilatation of the hepatic sinusoids mild degeneration of	
the hepatocytes and rare necrotic cells (H&E X400).	
Photo (23): Kidney of (Group 11); diabetic rat treated with the whole snake	164
gourd fruit without peel showing widespread granular cast in the	
lumen of most of the renal tubules and congested glomerular blood	
vessels (H&E X400).	
Photo (24): Portal tract of liver of (Group 11); diabetic rat treated with the	164
whole snake gourd fruit without peel showing portal edema and	
proliferation of bile duct epithelium (H&E X200).	
Photo (25): Portal area of liver of (Group 12); diabetic rat treated with the peels	165
of snake gourd fruit showing moderate degree of proliferation of the	
bile duct epithelium, few inflammatory cells infiltration and	
thickening of the blood vessel wall (H&E X400).	
Photo (26): Kidney of (Group 12); diabetic rat treated with the peels of snake	165
gourd fruit showing congestion of the renal blood vessels,	
vacuolation of the glomerular tufts, granular and vacuolar	
degeneration as well as necrosis of the tubular epithelium (H&E	
X400).	

ABSTRACT

The present work was curried out to evaluate the possible effects of cucumber and snake gourd parts (seeds, leaves, whole fruits, fruits without peel and peel of fruits) as 7.5% on the diabetes mellitus male albino rats. For this purpose, the determination of phenols and flavonoids for different fruit parts was done by HPLC method. The study included 84 rats, weight about 150 - 170 (g) weight, divided into two main groups. The first main group (7 rats) fed on basal as a (negative control group), while in the second main group (77 rats) diabetes mellitus was induced in normal healthy albino rats by intraperitoneal injection of Alloxan as a single dose (150 mg/Kg of the weight of the rat). The second main group divided into 11 groups (7 rats each). Group (1) fed on standard diet (positive control group). Groups(3-12) fed on basal diet containing 7.5% cucumber and snake gourd different parts (seeds, leaves, whole fruits, fruits without peel and peel of fruits) .At the end of the experimental period(28 days)rats were fasted overnight before sacrificing. Blood samples was collected, then centrifuged to separate the serum. Liver, kidneys, heart, spleen, lungs and pancreas were removed from each rat, cleaned and weighted to estimate of organs weight. The obtained results revealed that, treatment by Alloxan led to significant increase in serum glucose, cholesterol, triglycerides, LDL-c, VLDL-c, creatinine, urea, uric acid, AST ALT, ALP and decreased HDL-c. Feeding rats which were injected by alloxan with cucumber and snake gourd different parts (seeds, leaves, whole fruits, fruits without peel and peel of fruits at 7.5% level) showed decreased levels of serum glucose, AST ALT, ALP, and improved all other parameters including internal organs weights. The histopathological examination confirmed the improvement of biochemical parameters.

Key words: Diabetes mellitus, cucumber, snake gourd, glucose, liver function, kidney function, lipid profile, phenols, flavonoids, histopathological changes.