MANUFACTURE OF A POULTRY RESIDUES PROCESSING UNIT AND ITS UTILIZATION IN FISH FARMS

BY

AMIRA ABDEL-NASER MOHAMMED AMIN

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Sciences (Agricultural Engineering)

Department of Agricultural Engineering Faculty of Agriculture Zagazig University 2016

MANUFACTURE OF A POULTRY RESIDUES PROCESSING UNIT AND ITS UTILIZATION IN FISH FARMS

BY

AMIRA ABDEL-NASER MOHAMMED AMIN

B.Sc. (Agricultural Engineering), Faculty of Agriculture, Zagazig University (2011)

Under the Supervision of:

Prof. Dr. Moheb Mohamed Anees El Sharabasy		
Prof. of Agricultural Engineering, Faculty of Agriculture,		
Damitta University.		
Dr. Mohamed Mohamed El-hefny Badr		
Assist. Prof. of Agricultural Engineering, Faculty of Agriculture,		
Zagazig University.		
Prof. Dr. Mohamed El-tmeemy Abdo Mostafa		
Prof. of Fish Production, Central Lab. for Aquaculture		
Research, Agriculture Research Center.		

Approval Sheet

MANUFACTURE OF A POULTRY RESIDUES PROCESSING UNIT AND ITS UTILIZATION IN FISH FARMS

BY

AMIRA ABDEL-NASER MOHAMMED AMIN

B.Sc. (Agricultural Engineering), Faculty of Agriculture, Zagazig University (2011)

This thesis for M.Sc. degree has been

approved by:

Prof. Dr. Ahmed El – Raie Emam Suliman
Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture,
Cairo University.
Prof. Dr. Mahmoud Khattab Afify Khattab
Prof. and Head of Agricultural Engineering Department,
Faculty of Agriculture, Zagazig University.
Prof. Dr. Moheb Mohamed Anees El Sharabasy
Prof. of Agricultural Engineering Department, Faculty of
Agriculture, Damitta University.
Dr. Mohamed Mohamed El-hefny Badr
Assist. Prof. of Agricultural Engineering, Faculty of Agriculture,
Zagazig University.

Date of examination : 19/7/ 2016

ABSTRACT

The first experiment was carried out through the year of 2014 at Department of Agricultural Engineering, Faculty of Agriculture, Zagazig University to manufacture and evaluate the performance of a batch cooker used for rendering poultry abattoir residues (intestines and legs residues). The second experiment was executed at Production and Aquaculture System Department of Central Laboratory for Aquaculture Research (CLAR), Abbassa, Abou- Hammad, Sharkia Governorate, to investigate the effect of different levels of poultry by-product meal on the performance, feed utilization of Nile tilapia fish (*Oreochromis niloticus*).

The objectives of this work are to:

- 1. Manufacturing a poultry residues processing cooker for producing the best quality finished product.
- 2. Selecting the proper parameters affecting the performance of the manufactured cooker.
- 3. Selecting appropriate replacement level of poultry by-product meal of Nile tilapia Diets.
- 4. Evaluating the finished product from the economic point of view.

The first experiment aimed to study the performance of the manufactured cooker under the following parameters: Four different cooker loading rates, vapor pressures and steering speeds. The performance of the manufactured cooker was evaluated taking into consideration the following indicators: cooker productivity, total losses, cooking efficiency, required power, specific energy and criterion costs. The second experiment aimed to investigate the effect of different levels of poultry by-product meal on the performance, feed utilization, whole body composition of Nile tilapia and feeding cost. Growth performance was studied taking into consideration the following indicators: final body weight (FBW), daily weight gain (DWG) and specific growth rate (SGR). Feed utilization was studied taking into consideration the following indicators: Feed conversion ratio (FCR) and Protein efficiency ratio (PER).

The experimental results revealed that the total losses as well as criterion costs were minimum while overall cooking efficiency, the performance, feed utilization and whole body composition were maximum under the following conditions:

- Operating the manufactured cooker at cooker loading rates of 60, 45 and 30% for 100% intestines (R_1), 50% legs + 50% intestines (R_2) and 100% legs (R_3).
- Adjusting the cooking process at steering speeds of 30 rpm for (R₁) and 40 rpm for (R₂) and (R₃), respectively. Operating the manufactured cooker at vapor pressure of 2 bar for the same previous residues.
- The best replacement level of fish meal (FM) with poultry byproduct meal (PBM) was at D₃ (50%). This diet achieved the same FCR, PER and lower relative cost per one kilogram gained compared with the control diet. Thus, the cost will be reduced from 6660 LE.Mg⁻¹ to 5330 LE.Mg⁻¹ with 20% reduction in cost.

CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITURATURE	4
2.1. Types of raw materials	4
2.2. Poultry by-product meal	5
2.3. Rendering process systems	7
2.4. Factors affecting on rendering processes	10
2.5. Feeding poultry by-product meal to Nile tilapia fish	13
3. MATERIAL AND METHODE	15
3.1. MATERIALS	15
3.1.1. Raw material	15
3.1.2. Steam boiler	16
3.1.3. Rendering batch cooker	17
3.1.4. The experimental fish	23
3.1.5. Instruments	23
3.2. METHODS	24
3.2.1. The first experiment	25
3.2.2. The second experiment	26
3.2.3. Design consideration	26
3.2.3.1. Design of the outer pressure vessel	27
3.2.3.2. Design of mechanical agitator shaft	32
3.2.4. Diets preparation and feeding regimen	36

3.2.5. Chemical analysis of diets and fish	36
3.2.6. Statistical analyses	38
3.3. Measurements	38
4. RESULTES AND DISCUSSION	44
4.1. Influence of cooker loading rate on productivity and cooking efficiency at different kinds of poultry abattoir residues	44
4.2. Influence of cooker loading rate on total losses and specific energy at different kinds of poultry abattoir residues	47
4.3. Influence of cooker loading rate on operational and criterion costs at different kinds of poultry abattoir residues	49
4.4. Influence of steering speed on productivity and cooking efficiency at different vapor pressures	52
4.5. Influence of steering speed on total losses and specific energy at different vapor pressures	57
4.6. Influence of steering speed on operational and criterion costs at different vapor pressures	62
4.7. Effect of partially and totally replacement of fishmeal protein by poultry by-product meal protein on growth performance of Nile Tilapia (<i>Oreochromis</i>	
niloticus)	68
4.7.1. Body weight	68
4.7.2. Body length	68

4.7.3. Daily weight gain	70
4.7.4. Specific growth rate	70
4.7.5. Condition factor	70
4.7.6. Feed conversion ratio	72
4.7.7. Protein efficiency ratio	74
4.7.8. Whole body Composition	74
4.7.9. Economic evaluation	74
5. SUMMARY AND CONCLUSION	78
6. REFERENCES	
7. APPENDIX	96

LIST OF TABLES

No.	Title	Page
1	Minimum plate thickness for steam boilers	31
2	Composition and chemical analysis of the experimental diets	37
3	Influence of cooker loading rate on productivity, cooking efficiency, total losses and specific energy at different kinds of poultry abattoir residues	96
4	Influence of cooker loading rate on operational and criterion costs at different kinds of poultry abattoir	20
5	residues Influence of steering speed on productivity, cooking	97
	different vapor pressures	98
6	Influence of steering speed on productivity, cooking efficiency and total losses and specific energy at different vapor pressures	99
7	Influence of steering speed on productivity, cooking efficiency and total losses and specific energy at different vapor pressures	100
8	Influence of steering speed on operational and criterion costs at different vapor pressures	101
9	Influence of steering speed on operational and	101
	criterion costs at different vapor pressures	102
10	Influence of steering speed on operational and	103

No.	Title	Page
	criterion costs at different vapor pressures	
11	Body weight of Nile tilapia as affected by different levels of poultry by-product meal	104
12	Body length of Nile Tilapia as affected by different levels of poultry by-product meal	105
13	Daily weight gain of Nile Tilapia as affected by different levels of poultry by-product meal	106
14	Specific growth rate of Nile Tilapia as affected by different levels of poultry by-product meal	107
15	Condition factor of Nile tilapia as affected by different levels of poultry by-product meal	108
16	Feed conversion ratio of Nile tilapia as affected by different levels of poultry by-product meal	109
17	Protein efficiency ratio of Nile tilapia as affected by different levels of poultry by-product meal	110
18	Effect of different levels of poultry by-product meal on Body Composition of Nile Tilapia	111
19	Economic evaluation of Nile tilapia fingerlings as affected with different levels of poultry by-products	
	meal for 12 weeks	112

v

LIST OF FIGURES

No.	Title	Page
1	An elevation and section side view of the manufactured cooker	19
2	Failure of a cylindrical shell	28
3	Circumferential or hoop stress	29
4	Longitudinal stress	31
5	Stress analysis for the designed cooker shaft	35
6	Effect of cooker loading rate on productivity and cooking efficiency at different kinds of poultry abattoir residues	45
7	Effect of cooker loading rate on total losses and specific energy at different kinds of poultry abattoir residues	48
8	Effect of cooker loading operational and criterion costs at different kinds of poultry abattoir	50
9	Effect of steering speed on productivity and cooking efficiency at different vapor pressures for 100% intestines	53
10	Effect of steering speed on productivity and cooking efficiency at different vapor pressures for 50% intestines + 50% legs	54
11	Effect of steering speed on productivity and cooking efficiency at different vapor pressures for	55

No.	Title	Page
	100% legs	
12	Effect of steering speed on total losses and specific energy at different vapor pressures for 100% intestines	58
13	Effect of steering speed on total losses and specific energy at different vapor pressures for 50% intestines + 50% legs	59
14	Effect of steering speed on total losses and specific energy at different vapor pressures for 100% legs	60
15	Effect of steering speed on operational and criterion costs at different vapor pressures for 100% intestines	63
16	Effect of steering speed on operational and criterion costs at different vapor pressures for 50% intestines + 50% legs	64
17	Effect of steering speed on operational and criterion costs at different vapor pressures for 100% legs	65
18	Body weight of Nile tilapia as affected by different levels of poultry by-product meal	69
19	Body length of Nile Tilapia as affected by different levels of poultry by-product meal	69
20	Daily weight gain of Nile Tilapia as affected by different levels of poultry by-product meal	71

No.	Title	Page
21	Specific growth rate of Nile Tilapia as affected by different levels of poultry by-product meal	71
22	Condition factor of Nile tilapia as affected by different levels of poultry by-product meal	73
23	Feed conversion ratio of Nile tilapia as affected by different levels of poultry by-product meal	73
24	Protein efficiency ratio of Nile tilapia as affected by different levels of poultry by-product meal	75
25	Effect of different levels of poultry by-product meal on Body Composition of Nile Tilapia	75
26	Economic evaluation of Nile tilapia fingerlings as affected with different levels of poultry by-	
	products meal for 12 weeks	76

LIST OF PLATES

No.	Title	page
1	Intestines residues	16
2	Legs residues	16
3	The manufactured cooker	20
4	The final product	22

LIST OF ABBREVIATIONS

FBW	Final body weight.
DWG	Daily weight gain.
SGR	
FCR	Feed conversion ratio.
PER	Protein efficiency ratio.
R ₁	
R ₂	
R ₃	100% legs.
FM	Fish meal.
PBM	Poultry by-product meal.
NRA	National Renderers Association.
UKDEFRA	United Kingdom Department for Environment, Food and Rural Affairs.
EPAA	Environment Protection Authority of Australia.
BDR	Batch Dry Rendering System.
USEPA	US Environmental Protection Agency.
MBM	Meat and bone meal.
BSE	Bovine spongiform encephalopathy.
HTR	High temperature rendering.
LTR	Low temperature rendering.
COD	Chemical oxygen demand.
BW	Body weight.
BL	Body length.