

Isolation of Shiga-toxin producing *E. coli* (STEC) from fresh food and their natural environment

Thesis Submitted for A Ph.D. Degree in Science (Microbiology)

By

Mohamed Abd Elhakim Kelany Ali

B.Sc. in Microbiology/Chemistry (2004)

M.Sc. in Microbiology-Ain Shams University (2012)

Microbiology Department, Faculty of Science, Ain shams University

2017

Approval Sheet

Isolation of Shiga-toxin producing *E. coli* (STEC) from fresh food and their natural environment

Thesis submitted for a Ph.D. degree in Science (Microbiology)

By

Mohamed Abd Elhakim Kelany Ali B.Sc. in Microbiology/Chemistry, 2004 M.Sc. in Microbiology-Ain Shams University (2012)

Microbiology Department Faculty of Science, Ain shams University, 2017

Supervisors

1- Dr. Sahar Tolba Mohamed

Associate Professor of Microbiology, Department of Microbiology-Faculty of Science, Ain Shams University

2- Dr. Mohamed Abdalla Mahmoud Abd Elmoneim

Associate Professor of Microbiology, Agriculture Research Center

Examintion committee

1- Dr. Yehya Ahmed El-Zawahry

Professor of Microbiology, Department of Microbiology-Faculty of Science, Zagazig University

2- Dr. Hayam Abd Elaal Mansour

Professor of Food Hygiene, Department of Food Hygiene-Faculty of Veterinary Medicine, Cairo University

<u>Approval Sheet</u> Isolation of Shiga-toxin producing *E. coli* (STEC) in fresh food and their natural environment

Thesis submitted for a Ph.D. degree in Science (Microbiology)

By

Mohamed Abd Elhakim Kelany Ali B.Sc. in Microbiology/Chemistry, 2004 M.Sc. in Microbiology-Ain Shams University (2012)

Microbiology Department Faculty of Science, Ain shams University, 2017

Supervisors

1- Dr. Sahar Tolba Mohamed

Associate Professor of Microbiology, Department of Microbiology-Faculty of Science, Ain Shams University

2- Dr. Mohamed Abdalla Mahmoud Abd Elmoneim

Associate Professor of Microbiology, Agriculture

Contents				
Introduction	1			
Aim of thesis	4			
2-Review of literature	6			
2.1. Escherichia coli	6			
2.2. History of STEC	8			
2.3. Pathogenic E. coli	9			
2.3.1. Enterohaemorrhagic E. coli (EHEC)	12			
2.3.2. Nomenclature of VTEC/STEC	12			
2.4. Molecular pathogenesis	13			
2.4.1. Entry	14			
2.4.2. Adherence and Attachment	14			
2.4.3. Shigatoxin and development of HUS	16			
2. 5. Sources of STEC	18			
2.5.1. Prevalence of STEC in animal food products	19			
2.5.2. STEC in meats, beef and other sources	20			
2.5.3. STEC in milk and dairy products	22			
2.6. Clinical features and complications	22			
2.7. Diagnosis	24			
2.8. Treatment	28			
2.9. Control and prevention	29			
•				
3-Materials and Methods	32			
3.1. Materials	32			
3.1.1. List of media	32			
3.1.1.1. Modified tryptone soy broth (m-TSB)	32			
3.1.1.2. Buffered Peptone Water (BPW)				
3.1.1.3. Cefixime tellurite sorbitol Macconkey agar				
3.1.1.4. Tryptone Bile X-glucuronide medium (TBX)				
3.1.1.5. CHROM agar STEC base	33			
3.1.1.6. CHROM agar O157	34			
3.1.2. Solution and buffers	34			
3.1.2.1. Novobiocin solution	34			
3.1.2.2. Potassium tellurite and cefixime	34			
3.1.3. Reference strains and process control	35			
3.1.4. Primers	35			
3.1.5. Real Time PCR	36			
3.1.6. Serotyping	36			
3.1.7. Antibiotics	36			
3.1.8. Nano materials (Nano Silver)	37			
3.2. Methods				
3.2.1. Sampling	37			
3.2.2. Screening for STEC	39			
3.2.2.1. Enrichment of the samples	39			

Contents			
3.2.2.2. Extraction of DNA			
3.2.2.3. Real time PCR mixture solution	40		
3.2.2.4. Real time PCR runs	41		
3.2.2.5. Strain Isolation	46		
3.2.3. Detection of the E. coli O104:H4-2011 using Real Time PCR	47		
3.2.4. Antibiotic susceptibility test and MIC	48		
3.2.4.1. Antibiotic susceptibility test (Disk diffusion)	48		
3.2.4.2. Minimum Inhibitory Concentration	48		
3.2.5. Extraction of DNA from STEC isolates	51		
3.2.5.1. Identification of <i>stx</i> 2 subtypes of shiga-toxin 2 encoding	51		
gene of <i>E. coli</i> by conventional PCR			
3.2.5.2. Genetic detection of ESBL genes by polymerase chain	51		
reaction			
3.2.5.3. Agarose gel electrophoresis	52		
3.2.6. Procedure for the preparation of spherical nano silver	52		
4-Results	54		
4.1. Prevalence of STEC in food, feed, irrigation water, animal,	54		
plant and human			
4.1.1. Prevalence of STEC in cattle, sheep and goats	58		
4.1.2. Prevalence of STEC in drinking water and irrigation water	59		
4.1.3. Prevalence of STEC in beef, chicken and processed meat	59		
4.1.4. Prevalence of STEC in raw milk			
4.1.5. Prevalence of STEC in clinical samples			
4.2. Isolation of Shiga-toxin producing <i>E. coli</i>			
4.3. Serotype diversity of Shiga-toxin producing <i>E. coli</i> isolates			
4.3.1. Screening for <i>E. coli</i> O104-2011 (German strain)	64		
4.4. Distribution of virulence genes in STEC isolates			
4. 5. Susceptibility of the <i>E coli</i> isolates to antibiotics	68		
4. 6. Determination of the MIC of STEC isolates	71		
4. 7. Determination of <i>stx2</i> subtypes of selected <i>E coli</i>	73		
4. 8. Determination of the ESBL genes in STEC isolates	75		
4.9. Effect of Nano-materials (nano-silver) on E. coli and Shiga-	79		
toxin producing E. coli			
5-Discussion	82		
Summary	92 96		
Conclusion and Recommendation			
6-References	98		
Arabic summary			

List of Tables

	Page
(Table 1): Intestinal pathogenic <i>E. coli</i>	11
able 2): Degenerate primers and Taq Man probes used for 5' 42	
nuclease PCR assays for stx1, stx2 and eae	
(Table 3): Primers and probes used for amplification of O antigen specific gene in 5' nuclease PCR assays	43
(Table 4): List of primers was used for <i>stx</i> 2 subtypes detection	44
(Table 5): List of primers was used to detect ESBL genes using polymerase chain reaction	45
(Table 6): Dilution and antibacterial agents for MIC	49
(Table 7): Interpretation of antibacterial susceptibility test (zone of inhibition and MIC)	50
(Table 8): Prevalence of STEC in food, feed, irrigation water, animal, plant and human	55
(Table 9): Prevalence of STEC in cattle, sheep and goats	58
(Table 10): Prevalence of STEC in drinking water and irrigation water	59
(Table 11): Prevalence of STEC in beef, chicken and processed meat	60
(Table 12): Prevalence of STEC in raw milk	60
(Table 13): Serotypes of STEC isolates and the distribution of virulence genes	64
(Table 14): Distribution of virulence genes in human samples	66
(Table 15): Presence of multiple virulence genes in STEC isolates	67
(Table 16): Susceptibility of the <i>E coli</i> isolates to antibiotics	69
(Table 17): Determination of MIC for selected STEC isolates	72
(Table 18): <i>stx2</i> subtypes in the STEC isolates	73
(Table 19) shows the distribution of ESBL genes among different isolates	78
(Table 20) shows the concentration of the Nano-silver and the absorbance	81
(Table 21) shows the diameter of the zone of inhibition on the selected four isolates	81

List of Figures

	Page
Figure. (1): shows the amplification curves for the positive samples using Real Time PCR (Applied Bio-system 7500).	56
Fig (2): shows the amplification curves for the negative samples using Real Time PCR (Applied Bio-system 7500).	57
Fig (3): shows the amplification curves for the positive samples using Real Time PCR (PIKO 96).	57

List of Photos

	Page
Photo (1) shows STEC on SMAC agar and	62
CHROM agar	
Photo (2) shows STEC on TBX medium	62
Photo (3) shows Zone of Inhibition using disc	71
diffusion method	
Photo (4) PCR amplification of <i>stx2a</i>	74
Photo (5) PCR amplification of $stx2b$ and $stx2c$	74
Photo (6) PCR amplification of <i>stx2d</i>	75
Photo (7) PCR amplification of bla_{CTX}	76
Photo (8) PCR amplification of <i>bla</i> _{SHV}	76
Photo (9) PCR amplification of <i>bla</i> _{SHV}	77
Photo (10) PCR amplification of <i>bla_{TEM}</i>	77
Photo (11) shows spherical Silver Nano-particles	80
under transmission electron microscope (TEM)	
Photo (12) the inhibition zone for the nano-silver	80
and its dilution on the E. coli and S. aureus	

List of abbreviations and symbols

OTEO		
STEC	:	Shiga-toxin producing <i>Escherichia coli</i>
VTEC	:	Verocytotoxin producing Escherichia coli
PCR	:	Polymerase Chain Reaction
m-TSB	:	Modified Tryptone- Soy Broth
BPW	:	Buffered Peptone Water
CT-SMAC	:	Cefixime Tellurite Sorbitol MacConkey agar
TBX	:	Tryptone Bile X-glucuronide medium
ECDC	:	European Centre for Disease Control and Prevention
HUS	:	Hemolytic Uremic Syndrome
EFSA	:	European Food Safety Authority
PAI	:	Pathogenicity Islands
CDC	:	Centers for Disease Control
UPEC	:	Uropathogenic_E. coli
ETEC	:	Enterotoxigenic E. coli
EPEC	:	Enteropathogenic_E. coli
EHEC	:	Enterohemorrhagic_E. coli
DAEC	:	Diffuse adhering E. coli
EAEC	:	Enteroaggregative_E. coli
EIEC	:	Enteroinvasive E. coli
HC	:	Haemorrhagic Colitis
AE	:	Attachment and Effacing lesions
FDA	:	Food and Drug Administration
USDA	:	United States Department of Agriculture
АРНА	:	American Public Health Association
ESBL	:	Extended-Spectrum – β lactamase
NCCLS	:	National Committee for Clinical and Lab Standards
MIC	:	Minimum Inhibitory Concertation
TEM	:	Transmission Electron Microscope
bla	:	beta-lactamase or β-lactamase
MIC	:	Minimum Inhibitory Concentration
MRD	:	Multi Drug Resistant
bla _{U-CTX-M}	:	Universal CTX-M
PG	:	Penicillin G
TS	:	trimethoprim + sulfamethaxazole
T	:	Tetracyclin
IMI	:	Imipenem
VA	:	Vancomycin
CTX	:	Cefotaxim
NOR	:	Norofloxacin
GM	:	Gentamycin
CAZ	:	Ceftazidime
CPM	:	Cefepime
	•	Coropinio

Summary

Shiga-toxin producing *E. coli* (STEC) is a pathogen that causes diseases in humans, ranging from non-bloody diarrhea to severe illnesses as haemorrhagic colitis (HC) and haemolytic uraemic syndrome (HUS). Ruminants are regarded as the natural reservoir for Shiga toxin-producing *Escherichia coli* (STEC). Monitoring of ruminants and environmental samples (such as irrigation water and soil) is essential to evaluate the risk factor associated with STEC infection in humans.

This study highlights the occurrence of different types of O157 STEC and non-O157 STEC in animals such as cattle, sheep, goat and calves; environmental samples as irrigation water, soil and food samples of plant and animal origins.

A total of 642 samples were investigated directly for Shigatoxin encoded genes by Real Time PCR method using *stx* and *eae* specific probes. After enrichment of the samples isolation of STEC on selective media was carried out. Suspected colonies were tested for shiga-toxin by Real Time PCR.

Results indicated that out of the642 samples only 36 isolates were positive to one or more of the previously mentioned genes. Out of 120 fecal samples from different ruminants, 16.7% were positive for Shiga toxin. The highest percent of positive STEC samples was recorded in buffalos (30%) were positive,

while cows (15%); sheep (20%); goats (10%) and calves (20%). These results indicated the high prevalence of STEC in buffalos than cows and sheep. Irrigation water samples showed (8.3%) positive STEC. All the drinking water samples (25 samples) were negative.

Investigation of food samples indicated that (8%) of minced beef samples; (10%) chicken fillets and (4%) processed meat (4%) in raw milk were found to be contaminated with STEC. However STEC was not isolated from the plants during this study.

Serotyping of the isolates revealed that serotype O157 was the most predominant serotype in water samples, while other various serotypes and non-O157 such as O78, O55, O26, O1 and O126 were distributed in the rest of the isolates recovered from the other sources. It was noted that the presence of non-O157 was greater than O157 in fecal samples and Milk.

STEC were not isolated from human fecal samples and screening using real time PCR didn't give any amplification for the *stx1* or *stx2* genes. However, *eae* gene was isolated from various samples suggesting the presence of a pathogenic *E. coli* other than STEC which may be enteropathogenic *E. coli*.

The German strain of the year 2011 (*E. coli* O104:H4-2011) was not isolated or detected in this study suggesting that

this strain is not found in our environment and that the causative agent of the 2011 outbreak was not originated from Egypt.

Antibiotic susceptibility of STEC isolates indicated that all the isolates were resistant to penicilliG, vancomycin, while most of them were resistant to the tetracyclin. All isolates were sensitive to the imipenem, gentamycin and norofloxacin. Isolates recovered from animal fecal samples and food samples were the most resistant isolates, some were resistant to 6 antibiotics.

Twelve isolates were selected from different samples for studying the distribution of shiga-toxin subtypes; it was noticed that the most frequent subtype was stx2 type (c) followed by stx2 subtype (d), and the least to be recorded was Subtype (a). A combination of stx2 subtypes was recorded in some isolates.

Detection of β lactamase resistance genes (*bla_{CTX}*, *bla_{SHV}* and *bla_{TEM}*) was also studied; this study confirms the prevalence of ESBL-producing bacteria of STEC group and demonstrates the spread of genes encoding ESBLs among STEC isolated from animals and/or the environment.

Silver nano-particles are useful for medical applications due to their strong antibacterial activity. In this study, silver nanoparticles were synthesized using specific chemical method and it was characterized by UV-vis spectroscopy and transmission electron microscope (TEM). Spherical nano-silver proved to have potential against *E. coli* and STEC.

Conclusion and Recommendation

- This study provides evidence that Shiga-toxin producing *E. coli* of zoonotic origin can contaminate the environment such as irrigation water as a result of the discharge of ruminants.
- Cattle, sheep and goat are possible sources of the transmission of this pathogen to the environment.
- The lack of enforcement of good hygiene practice and good manufacturing practice may ease the transmission of STEC to contaminate products.
- Raw milk and unpasteurized milk may pose a possible source for the contamination by STEC.
- Real Time PCR is a power tool for the detection of STEC in food and environmental sample.
- New pathogenic strains may emerge as a result of exchange of genetic materials.
- The German strain *E. coli* O104:H4-2011 is not found in our environment and also suggesting that the causative agent of the 2011 outbreak was not originated from Egypt.
- STEC strains isolated from food, environment and animals have developed antibiotic resistance that highlight the importance of gene transfer in the distribution of antibiotic resistance in the environment.

Recommendation:-

 Using of Real Time PCR method as an accurate and very fast diagnostic tool for the detection of food born pathogen such as Shiga-toxin producing *E. coli*as this group of pathogens are very similar in theirmorphological and biochemical characteristics with other groups of pathogenic *E. coli*.

- 2- Antibiotics should be used with a great concern in both animal and human to avoid the emergence and spread of antibiotic resistance between pathogenic bacteria.
- 3- Attention should be taken to the ruminants which are considered as the main reservoir of STEC; other group of animals such as sheep and goat are considered to be a possible source of the transmission of this group of pathogen.
- 4- Vaccination against STEC may be considered a possible solution of this problem and to reduce its prevalence in the cattle population.
- 5- Using filters containing Nano-Silver particles can be used as a preventive tool for the purification of irrigation water from this pathogen.
- 6- Food should be handled and cooked in a proper way; milk should be pasteurized and never consumed raw to avoid the infection of human.
- 7- Good hygienic practice and good manufacturing practice are very important for the processing of meat products
- 8- Further researches are needed to develop a better culture media and diagnostic tools to discriminate between different pathogenic groups of *E. coli*.
- 9- Future studies are needed to study the role of mobile genetic elementsin the transfer of resistance genes and virulence genes.