

Benha University Faculty of Veterinary Medicine Department of virology

Isolation and characterization of more recent isolates of infectious canine hepatitis virus

Thesis submitted to Faculty of Veterinary Medicine
Benha University

By

Shaimaa Mohammed Ibrahim El-Desoky

B.V.Sc., Cairo University, (2012)

For

The degree of M.V.Sc (virology)

Under supervision of

Prof. Dr. Gabr Fikry El-Bagoury

Professor of Virology, Faculty of Veterinary Medicine, Benha University

Prof .Dr. Zeinb Taha Salem

Chief of Researches, Vet. Serum and Vaccine Research Institute. Abbasia - Cairo

Dr. Ehab Mostafa El-Nahas

Professor of Virology, Faculty of Veterinary Medicine, Benha University

CONTENTS

	1
1- INTRODUCTION	
2- REVIEW OF LITERATURE	
2. 1. Definition	
2. 2. Historical Prespective	
2. 3. Etiological agent and Classification	
2. 4. Physico-chemical characters	
2. 5. Structural properties of Adenovirus	
2. 6. Genome structure and function of Adenovirus	
2. 7. Adenovirus replication cycle	
2. 8. Antigenic properties	
2. 9. Clinical signs and post mortem findings of ICH	
2. 10. Laboratory diagnosis; virus isolation and virus identification	
2. 11. Immune status	
2. 12. Vaccines	
3.MATERIAL AND METHODS.	
1- Material	
2-Methods	
4.RESULTS	
5.DISCUSSION	
6.SUMMARY	
7.CONCLUSION	
8.REFERENCES	
O ADARIC SIIMMARV	

List of photos

Photo No	Photo	Page
Photo (1)	Blue eye in CAV1 infected dog	13
Photo (2)	Gelatinous subcutaneous oedema of the head	13
	and neck, with petechial and ecchymotic	
	haemorrhages (Duarte et al, 2014)	
Photo (3)	Normal Vero cell culture (H&E, 100Xs)	36
Photo (4)	Vero cell culture infected with the obtained	36
	CAV1, 5days post infection (H&E, 100Xs)	
Photo (5)	Normal BHK cell culture (H&E, 100Xs)	37
Photo (6)	BHK cell culture infected with the obtained	37
	CAV1, 3days post infection (H&E, 100Xs)	
Photo (7)	Normal MDCK cell culture (H&E, 100Xs)	38
Photo (8)	MDCK cell culture infected with the obtained	38
	CAV1, 4days post infection (H&E, 100Xs)	
Photo (9)	Positive FAT carried out on MDCK cells	40
	infected with the obtained CAV-1 isolate	
	showing intra-cytoplasmic apple green	
	reaction (100Xs)	
Photo(10)	Negative FAT carried out on normal MDCK	40
	cell line (100Xs)	
Photo(11)	Electron microscopic 80000X direct	43
	magnification.	

List of figures

Fig NO.	Fig	Page
Fig. (1)	Viral structure	8

LIST OF TABLES

Table	Title	Page
(1)	Data of dogs suggested to be infected with CAdV-1	
(2)	Numbers of fecal and urine samples examined by chromatographic immunoassay	
(3)	neutralizing antibody titer of CAdV-1 in sera from tested dogs	
(4)	Numbers of positive fecal and urine samples for CAdV- 1 examined by chromatographic immunoassay in tested dog	
(5)	CPE onset, harvestation time and infectivity titer of CAdV-1 isolate post three successive passages on MDCK, Vero and BHK-21 cell lines	
(6)	ELISA titer of the obtained CAdV-1in different cell cultures	

List of abbreviations

μ1	Microliter
μm	Micrometer
ВНК	Baby hamster kidney cell line
CAdV-1	Canine Adeno Type-1 Virus
CAdV-2	Canine Adeno Type-2 Virus
CHV	Canine Hepatitis Virus
CIRDC	Canine Infectious Respiratory
	Disease Complex
СРЕ	Cytopathic effect
CPV	Canine parvo virus
DDW	Double distilled water
DNA	Deoxy ribonucleic acid
DPAVR	Department of Pet Animal Vaccine
	Research
EDTA	Ethylene diamine tetra Acetic acid
ELISA	Enzyme Linked Imunosorbant
	assay
EMEM	Eagle's minimum essential medium
FAT	Fluoresent antibody technique
FBS	Fetal bovine serum
FCS	Fetal calf serum
FITC	Fluorscence isothiocyanat
Gm	Gram
H&E	Haematoxylin and Eosin
HBSS	Hank's balanced salt solution
HRP	Horse Radish Peroxidase

IC	Immunochromatographic test
ICH	Infectious Canine Hepatitis
IIBs	Intranuclear Inclusion Bodies
ITR	Inverted Terminal Repeat
IU	International Unite
Kbp	Kilo base pair
KDa	Kilo Dalton
MDCK	Madin Derby Canine Kidney cell
	line
MEM	Minimal Essential Medium
MLV	Modified live vaccine
Mm	Millimeter
OD	Optic density
ORFs	Opening reading fram
PBS	Phosphate Buffer saline
PCR	Polymras Chain Reaction
PI	Post- inculation
QGE	Quick Gel Extraction Kit
Rpm	revolution per minute
SNT	Serum Neutralization Test
TC	Tissue culture
TCID ₅₀	Tissue culture infective dose 50%
VACSERA	
Vero	African green monky kidney cell
	line
VNT	Virus neutralization test
VSVRI	Veterinary Serum and Vaccine

Research Institute	

6- CONCLUSIONS

From the obtained results in the present study it could be concluded that:

- 1- Canine adenovirus type-1 (CAdV-1) infection is circulated in the dogs under the study; the circulated strain was isolated from fecal samples .
- 2- Fecal samples is preferred than urine samples for isolation CAdV-1 in dogs.
- 3- CAdV-1 could be isolated on different cell line includes Vero; BHK and MDCK.
- 4- MDCK cells are promising cell substrates for the production of CAdV-1 in order to vaccine production.

7- SUMMARY

Pets especially dogs are lovely animals playing an important sociological role especially within children and those who deprived from infants. As other animal species dogs could be affected by many diseases resulted in huge money losses especially among high breeds in addition to the reverse bad effects on their owners.

Canine adenovirus type 1 (CAdV-1) is the aetiological agent of infectious canine hepatitis (ICH), a nonenveloped icosahedral double-stranded DNA virus belongs to the genus *Mastadenovirus* of the family *Adenoviridae*. Canine hepatitis is characterized by asymptomatic to fatal disease. The virus enters the host via direct contact with contaminated saliva, urine and feces. The incubation period is 4–7 days. The main clinical findings are rhinitis, ataxia, anorexia, tonsillitis, and abdominal pain, blood in feces, acute/chronic hepatitis and interstitial nephritis. Encephalitis is an infrequent event but when it occurs, death can follow rapidly, with lethargy, ataxia, blindness and vomiting. Bilateral opacity of the eyes, referred to as 'blue eye' due to corneal oedema and accumulation of antigen-antibody complexes in the anterior chamber.

The present work was designed for isolation and identification of a recent canine adenovirus-1 (CAdV-1) induced infectious canine hepatitis (ICH) in Egypt

The applied experiments revealed that:

1. Using SNT, it was found that neutralizing CAdV-1 antibodies titer in the sera of these dogs was ranged 0 to 4 indicate poor immune status that did not enable them to withstand the virus infection.

- 2. Direct antigen detection by chromatographic immunoassay was found that 15 out of 20 fecal swabs and 9 out of 13 urine samples showed the incidence of CAdV-1.
- 3. The positive chromatographic assay samples (15 fecal swabs and 9 urine samples) subjected to 3 successive passages in both of Vero; BHK and MDCK cell lines revealed that none of urine samples showed cytopathic effect (CPE) in any of the used cell lines allover the three successive passages while only three fecal swabs showed characteristic cytopathic effect of CAV-1 in all used cell cultures. Such CPE was characterized by cell rounding and cell clumping in irregular clusters followed by detachment from the culture surface. At first it was noticed that the CPE started later within 7-8 days in all cell lines then began to be earlier to be 2-3 days in MDCK; Vero and BHK cells respectively with harvestation time 5; 6 and 7days post cell infection respectively.
- 4. MDCK was the most suitable for CAdV-1 propagation yielding the highest virus titer by the 3rd passage followed by Vero and BHK cells with values of 7.5; 5.7 and 5.0 log10 TCID50/ml respectively.
- 5. Negative stain electron microscopy of infected MDCK cells with the obtained isolates showed the presence of 100nm hexagonal viral particles resembling those of CAdV-1.
- 6. Application of VNT, direct FAT and indirect ELISA on the three samples inducing characteristic CPE of CAdV-1 in MDCK cell line using specific anti-CAdV-1 serum confirmed that the obtained isolate is CAdV-1.