

Cairo University Faculty of Veterinary Medicine Department of Microbiology

Comparative study on different types of inactivated Pasteurella vaccine for rabbits

A Thesis Presented By

Mahmoud Tawfik Ahmed Ismail

B.V.Sc., Cairo University, 2007

M.V.Sc., Cairo University, 2015

For the Ph.D. Degree in Veterinary Medical sciences (Microbiology)

Under the supervision of

Prof. Dr. Mona Ibrahim El-Enbaawy

Prof. and head of Microbiology Department

Faculty of Veterinary Medicine

Cairo University

Prof. Dr. Eman Mohamed El Rawy

Chief researcher and head of Aerobic bacteria vaccine research Department

Veterinary Serum and Vaccine

Research Institute, Abbasia, Cairo

2019

Cairo University

Faculty of Veterinary Medicine

Department of Microbiology

APPROVAL SHEET

This is to approve that dissertation presented by

Mahmoud Tawfik Ahmed Ismail

To Cairo University

Entitled

Comparative study on different types of inactivated Pasteurella vaccine for rabbits

For the Ph.D. Degree

(Microbiology)

has been approved by the examining committee:

Prof. Dr. Mohamed Alsayed Anany

Professor of Microbiology

Faculty of veterinary Medicine

Suez Canal University

Prof. Dr. Saad Ahmed Attia Sayied Ahmed

Professor of Microbiology

Faculty of veterinary Medicine

Cairo University

Professor of Microbiology

Faculty of veterinary Medicine

Cairo University

(Supervisor)

Prof. Dr. Eman Mohamed El Rawy

Chief researcher of microbiology and head of Aerobic bacteria vaccine research Department

Veterinary Serum and Vaccine Research Institute.

Abbasia, Cairo

(Supervisor)

Date: 9 / 1 / 2019

Eman Mohamed ElRawy

Prof. Dr. Mona Ibrahim Hassan El-Enbaawy Mona El-Enbaawy

Supervision sheet:

This thesis is under supervision of:

Prof. Dr. Mona Ibrahim Hassan El-Enbaawy

Professor and head of Microbiology Department

Faculty of Veterinary Medicine

Cairo University

Prof. Dr. Eman Mohamed El Rawy

Chief researcher and head of Aerobic bacteria vaccine research Department

Veterinary Serum and Vaccine Research Institute

Abbasia, Cairo

Cairo University Faculty of Veterinary Medicine Department of Microbiology

Name: Mahmoud Tawfik Ahmed Ismail Date of birth: 30/06/1985 Nationality: Egyptian Degree: PhD of Veterinary Medical Sciences. Specialization: Microbiology (Bacteriology, Immunology, Mycology) Title of thesis: Comparative study on different types of inactivated Pasteurella vaccine for rabbits Supervisors:

1. Prof. Dr. Mona Ibrahim. H. El-Enbaawy

2. Prof. Dr. Eman Mohamed El Rawy

Abstract

Snuffle disease is one of the most important health problems in rabbits. It is caused by *P. multocida*. A total of 116 New-Zealand rabbits were used in evaluation of four prepared polyvalent *P. multocida* (serotypes A: 1, A: 3, A :12 and D: 2) vaccines. First vaccine was formalized non adjuvanted Pasteurella vaccine (FV). Second one was Lipid A adjuvanted Pasteurella vaccine (AV) in which the Lipid A was self-prepared, extracted from *E. coli* O: 157 and evaluated by High Performance Liquid Chromatography (HPLC). Third one was Montanide TM ISA 70 VG adjuvanted Pasteurella vaccine (MV). Fourth one was Montanide TM IMS1313 VG N PR adjuvanted Pasteurella vaccine (NV) and finally control groups. Comparisons between the prepared vaccines were done by challenge test, Lysozyme activity test, IHA test and ELISA. Statistical analysis was done. MontanideTM ISA 70 VG adjuvanted Pasteurella vaccine and Lipid A adjuvanted Pasteurella vaccine swere the best, followed by Formalized non adjuvanted Pasteurella vaccine then MontanideTM IMS1313 VG N PR adjuvanted Pasteurella vaccine and Lipid A adjuvanted Pasteurella vaccine then Montanide TM IMS1313 VG N PR adjuvanted Pasteurella vaccine then Montanide TM IMS1313 VG N PR adjuvanted Pasteurella vaccine then Montanide TM IMS1313 VG N PR adjuvanted Pasteurella vaccine then Montanide TM IMS1313 VG N PR adjuvanted Pasteurella vaccine then Montanide TM IMS1313 VG N PR adjuvanted Pasteurella vaccine then Montanide TM IMS1313 VG N PR adjuvanted Pasteurella vaccine then Montanide TM IMS1313 VG N PR adjuvanted Pasteurella vaccine.

In conclusion, the 1st dose vaccination may need bootstring for better results. MontanideTM ISA 70 VG and Lipid A adjuvanted Pasteurella vaccines were the best two in the prepared vaccines. Vaccination and bootstring by Montanide TM ISA 70 or Lipid A adjuvanted Pasteurella vaccines give 100 % protection.

Key words: P. multocida, Lipid A, Montanide, Vaccine, one-shot, HPLC.

Contents

Subject	Page
List of Tables	IV
List of Figures	\mathbf{V}
List of Photos	\mathbf{V}
List of Abbreviations	VI
Introduction	1
Review of literature	4
2.1. Important of Pasteurella in rabbits	4
2.2. Formalized Inactivated Pasteurella vaccine	17
2.3. Lipid A as an adjuvant	21
2.4. Montanide adjuvants	31
2.5. Evaluation of Pasteurella vaccines in rabbits	39
Materials and Methods	48
3.1. Materials	48
3.1.1. Bacterial strains	48
3.1.2. Media used for isolation	48
3.1.3. Media used for biochemical identification	50
3.1.4. Media used for testing vaccine sterility	50 51
3.1.6 Stains used for confirmation of <i>P</i> multocida	52
3.1.7 Lipid A extraction and evaluation by HPLC	53
3.1.8. Adjuvants	55 54
3.1.9. Materials used for evaluation of Montanide TM IMS1313	
VG N PR (containing nano particles) adjuvanted vaccine	54
3.1.10. Inactivators	54
3.1.11. Preservative	55
3.1.12. Materials for immunity evaluation	55
3.1.12.1. Materials for evaluation of innate immunity	
estimation (serum lysozyme activity)	55
3.1.12.2. Materials used for evaluation of humoral immunity	56
3.1.13. Buffers and solutions	58
3.1.14. Experimental animals	59
3.1.15. Other materials and equipment	60

3.2. Methods	51
3.2.1. <i>P. multocida</i> strains subculture	51
3.2.2. Biochemical confirmation of <i>P. multocida</i> strains	51
3.2.3. Preparation of <i>E. coli</i> for Lipid A extraction	53
3.2.4. Evaluation of Lipid A extract by HPLC	54
3.2.5. Preparation of the <i>Pasteurella</i> vaccines	56
3.2.6. Addition of preservative (thiomersal)	59
3.2.7. Quality control on the prepared <i>P. multocida</i>	
vaccines	70
3.2.8. Evaluation of the immunizing potency of the prepared	
Vaccines	74
3.2.9. Statistical analysis	31
Results	32
4.1. Subculture and confirmatory tests for <i>P. multocida</i> field	32
Strains	
4.2. High pressure liquid chromatography (HPLC) for	
confirmation of Lipid A extraction purity	33
4.3. Formalin inactivation of the <i>P. multocida</i> bulk culture	38
4.4. Results of determination of chemical residues in the	
prepared vaccine	38
4.5. Quality control on the prepared <i>P. multocida</i> vaccines	38
4.6. Bio assay (challenge) test results) 0
4.7. Lysozyme activity results) 3
4.8. Indirect Hemagglutination (IHA) test results 1	00
4.9. Enzyme Linked Immuno Sorbent Assay (ELISA) test	
Results 1	06
Discussion 1	14
Summary 1	36
References 1	39
Arabic summary	

List of Tables

No.	Title	Page
1	The specific characteristic feature for <i>P. multocida</i>	63
2	The concentrations of Lipid A standard (μ g/ml) and	83
	their corresponding peak response	
3	The precision results of Lipid A	85
4	The recovery studies Lipid A	86
5	The accuracy and recovery studies of Lipid A	86
6	The mortality and protection rates 3 weeks of first	91
	dose of vaccination	
7	The mortality and protection rates after 3 weeks of	92
	booster dose of vaccination	
8	The results of lysozyme activity after 1 st dose of	95
	vaccination for each group on days 1, 3, 5, and7 in	
	µg/ml concentration	
9	The results of lysozyme activity after 2 nd dose of	98
	vaccination for each group on days 1, 3, 5, and7 in	
	µg/ml concentration	
10	The results of IHA test measured by GMT after the 1 st	101
	dose of Pasteurella vaccination and 3 weeks after the	
	challenge test	
11	The IHA results by GMT after the booster dose and 3	104
	weeks after the challenge test	
12	The results of ELISA test after 1 st dose of Pasteurella	108
	vaccination and 3 weeks after the challenge test	
13	The results of ELISA test after the booster dose of	112
	Pasteurella vaccination and 3 weeks after challenge	
	test	

List of Figures

No.	Title	Page
1	The liquid chromatogram of 1 µg/ml Lipid A standard	84
2	The standard curve of Lipid A	85
3	The liquid chromatogram of Lipid A extract of E. coli	
	O:157 bacteria cells with a concentration 1 µg/ml	
4	The comparisons between all groups results of Lysozyme	96
	activity after the 1 st dose of vaccination	
5	The lysozyme activity after the booster dose of	99
	vaccination	
6	The results of IHA test measured by GMT after the 1 st	102
	dose of Pasteurella vaccination and 3 weeks after the	
	challenge test	
7	The IHA results by GMT after the booster dose and 3	105
	weeks after the challenge test	
8	The results of ELISA test after 1 st dose of Pasteurella	109
	vaccination and 3 weeks after the challenge test	
9	The ELISA test results after the booster dose and 3 weeks	113
	after the challenge test	

List of Photographs

No.	Title	Page
1	The nano particle size: 48.71 nm	88
2	the nano particle size: 24.68 nm	88

List of abbreviations

AEs	Adverse events
AF	Acriflavine test
Ag	Antigen
AI	Avian influenza
ALV	Aluminum hydroxide gel vaccine
AMPT	Active mouse protection test
APCs	Antigen presenting cells
Bb	Bordetella bronchiseptica
CD	Cluster of differentiation
CFU	Colony forming unit
CIE	Counter immunoelectrophoresis
D.W.	Distilled water
ELISA	Enzyme linked immunosorbent assay
EMB	Eosin Methylene Blue Agar
FI-RSV	Formalin-inactivated respiratory
	syncytial virus
GA-SRBC	Gluteraldehyde fixed sheep red blood
	cells
GDPT	Gel-diffusion precipitin test
GMT	Geometric Mean Titer
НА	Hemagglutination test
HI	Hemagglutination inhibition test
HPLC	High performance liquid
	chromatography
ICH	International conference
	harmonization
I/D	Intradermal
IM	Intra muscular
IFN-γ	Interferon gamma
IHA, IHAT	Indirect haemagglutination test
IL-2	Interleukin 2
ISA	Incomplete Seppic Adjuvant
LBP	Lipopolysaccharide binding protein
LD ₅₀	Lethal dose 50
LOD	Limit of detection
LOQ	Limit of quantification

LPS	lipopolysaccharides
MAbs	Monoclonal antibodies
MAT	Micro agglutination test
MD	Myeloid differentiation
ME	Multiple emulsion adjuvant vaccine
MHCII	Major histocompatibility class II
Mins	Minutes
MN	Microneedle
MPL A	Monophosphoryl Lipid A
MyD88	Myeloid differentiation factor 88
No.	Number
OAV	Oil adjuvant vaccine
OPD	Ortho-phenylene-diamine
OV	Oily adjuvant vaccine
PBS	Phosphate buffer saline
PM	Post mortem
PMT	Pasteurella multocida toxin
PMPT	Passive mouse protection test
RSD	Relative standard deviation
RSV	Respiratory syncytial virus
S/C	Subcutaneous
SAEs	Serious adverse events
SPF	Specific pathogen free
TAAs	Tumor-associated antigens
Th2	T helper type 2
TIR	Toll-interleukin 1 receptor
TLR	Toll like receptor
TNF	Tumor necrosis factor
TRIF	Toll-interleukin 1 receptor domain-
	containing adapter inducing
	interferon-β
TSA	Tryptone soya agar medium