Effect of sulphur addition on biochemical components of onion (*Allium cepa*) and its productivity grown in salt affected soil

Presented by

Marwa Adel Qotob Ibrahim

A Thesis Submitted to

Faculty of Science

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

(Biochemistry)

Biochemistry Department

Faculty of Science

Cairo University

(2017)

APPROVAL SHEET

Thesis Title

Effect of sulphur addition on biochemical components of onion (*Allium cepa*) and its productivity grown in salt affected soil

Name of candidate: Marwa Adel Qotob Ibrahim

This thesis has been approved for submission by the supervisors:

1- (Late) Prof. Dr. Amr Saad Mohammed Professor of biochemistry Faculty of Science Cairo University	
2-Prof. Dr. Ahmed Ibrahim Amin	
Professor of biochemistry	
Faculty of Science	
Cairo University	
3-Prof. Dr. Olfat Gameil Shaker Professor of biochemistry Faculty of Medicine Cairo University	
4-Prof. Dr. Atef Abdel- Mageed El- Masry Chief research of soil science Soils, Water and Environment research Institute Agriculture Research center	

Prof. Dr. Wafaa Mahmoud Hosny Chairman of Chemistry Department Faculty of Science- Cairo University

ABSTRACT

Student Name: Marwa Adel Qotob Ibrahim

Title of the Thesis: Effect of sulphur addition on biochemical components of onion (*Allium cepa*) and its productivity grown in salt affected soil. Degree: Master Degree (Biochemistry)

Abstract: The objective of this study is to evaluate the effect of sulphur addition, fertilization of ammonia gas, ammonium nitrate or urea on biochemical components and pungency of onion plants grown on salt affected soil. Two field experiments were carried out on salt affected soil clay loam in texture at the farm of Tamyia, El Fayoum Governorate during two agricultural successive seasons *i.e.* 2013/14 and 2014/15 on onion (*Allium cepa*) plant (cv. Giza 20) to investigate the effect of elemental sulfur, some sources of nitrogen and organic compost on the biochemical components grown on salt affected soil.

The obtained data representing the responses of onion plants to the application of elemental sulphur rates and different sources of nitrogen at maximum growth stage. Data indicated a relative difference between sulphur rates application (without, 100 and 120 Kg S fed⁻¹), where at rate 100 Kg S fed⁻¹showed slightly increase for chlorophyll a, chlorophyll b, total chlorophyll and carotenoids. Data showed that the sulphur at rate 100 Kg S fed⁻¹ was the best rate for total amino acids, free amino acids and total protein according to the mean values 41.9 mg g⁻¹ as total amino acids, 7.60 mg g⁻¹as free amino acids and 13.82 % as total protein. As mentioned before, the response of pungency (pyruvic acid) and bulb quality as (pyruvic acid, total carbohydrate and total soluble solid), yield and yield components of onion plant for the sulphur rates (120 Kg S fed⁻¹) have the same behavior where the application sulphur rate 100 Kg S fed⁻¹ was the most favourable treatment.

By taking in consideration the compost effect as an organic nitrogen source the data revealed that the combination between the organic nitrogen source and inorganic source like (ammonia gas, ammonium nitrate and urea) gave a different result such that obtained from fertilization by inorganic nitrogen sources sole where results of ammonia gas withdrawn than results of ammonium nitrate. Consequently, the order of nitrogen sources will be follow the descending order of: ammonia gas > ammonia gas > urea and order of nitrogen sources sole will be follow the descending order of: ammonia gas > ammonium nitrate > urea.

Finally, regard to the soil cultivated with onion plants the highest values were at ammonia gas without sulphur and ammonium nitrate with compost at 120 Kg S fed⁻¹ for pH, EC_e , cations and anions. Data also, showed that the application of inorganic nitrogen sole give highest available nitrogen, phosphorous and potassium values but, when inorganic nitrogen sources a combined with organic source the values were decreased in case of ammonia gas application while at ammonium nitrate or urea application values of NPK were increased when organic compost a combined with ammonium nitrate or urea.

Data indicated that the elemental sulphur application at rate 100 Kg S fed⁻¹ was followed the descending order: 100 Kg S fed⁻¹ > 120 Kg S fed⁻¹ > without sulphur. Nitrogen sources application as inorganic sources sole or inorganic sources combined with organic source. The application of ammonia gas sole was more effective than application of ammonia gas combined with compost while ammonium nitrate or urea gave higher values than ammonium nitrate or urea application sole.

Key words: Elemental sulphur, biochemical components, pungency, onion plants and salt affected soil.

* One hectare (ha) = 2.4 fed	
Supervisors:	Signature
1- (Late) Prof. Dr. Amr Saad Mohammed.	
2- Prof. Dr. Ahmed Ibrahim Amin.	
3- Prof. Dr. Olfat Gameel Shaker.	
4- Prof. Dr. Atef Abdel- Mageed El- Masry.	

Prof. Dr. Wafaa Mahmoud Hosny Chairman of chemistry Department Faculty of Science- Cairo University

CONTENTS

Titlo

Title	Page
List of Abbreviation	
List of Tables	
List of Figures	
Chapter 1: Introduction and Aim of the work	1
Chapter 2: Literature Review	4
2.1. The origin and botany of onion (<i>Allium cepa</i> L.)	4
2.1.1. Onion production in the world and Egypt	4
2.1.2. Onion plants taxonomy and anatomy	5
2.1.3. Onion (Allium cepa L.) life cycle	7
2.1.4. Factors affecting on onion bulbing	8
2.2. Compounds in onion (Allium cepa L.)	12
2.2.1. Sulfur compounds	12
2.2.2. Non-sulfur compounds	12
2.3. Quality and some biochemical components of onion plants	13
2.3.1. Carbohydrate contents of onion plant	13
2.3.2. Protein contents of onion plants	16
2.3.3. Amino acids contents of onion plants	16
2.3.4. Proline constituents of onion plants	18
2.3.5. Pyruvic acid contents of onion plant	20
2.3.6. Storage of onion	21
2.4. The sulphur cycle	22
2.5. Role of sulphur application on onion growth	23
2.5.1. Characterization of soil organic Sulphur	26
2.5.2. Sources and behaviors of sulphur in soils	26
2.5.2.1. Soil inorganic sulphur	26
2.5.2.2. Soil organic sulphur and its mineralization	27
2.5.3. Soil adsorption of sulphate	29
2.5.4. Soil sulphur amendments	30
2.6. Application of organic and inorganic fertilizers for onion plants	31
2.6.1. Inorganic fertilizers application.	31

2 2 2 2 2.6. Ap plants.. 2.6.1. Inorganic fertilizers application. 2.6.1.1. Nitrogen application..... 2.6.1.1.1. Role of nitrogen fertilizers on onion plants..... 2.6.1.1.2. Types of nitrogen sources..... 1. Ammonia. 2. Urea..... 3. Ammonium nitrate.....

I

31

33

35

35

36

37

Page

Title	Page
4. Ammonium sulfate	37
2.6.1.2. Phosphorus application	38
2.6.1.3. Potassium application	39
2.6.2. Organic compost fertilizers application	40
2.6.2.1. Types of organic composts	40
2.6.2.2. The Composting process	42
2.6.2.3. Factors influencing the composting process	43
2.7. Soil characteristics and properties	44
2.7.1. Soil definition.	44
2.7.2. Soil classification according to particle size	45
2.7.2.1. Sandy Soils	45
2.7.2.2. Silty soils	46
2.7.2.3. Clay soils	46
2.7.3. Soil classification due to pH and EC _e	47
2.7.3.1. What are pH and electrical conductivity?	47
2.7.3.2. Soil classification according to pH	47
2.7.3.3. Soil classification according to	48
Ec _e	48
2.7.4. Soil salinity and sodicity	49
2.7.4.1. Salinity Definition	49
2.7.4.2. Sodicity Definition	50
2.7.4.3. Salinity Effects	51
2.7.4.4. Effect of salinity on plant growth	52
2.7.4.5. Effect of salt affected soil on onion plant	50
growth	52
Chapter 3: Materials and Methods	57
3.1. Location and duration	57
3.2. Climate	57
3.3. Soil	57
3.4. Materials used for the experiment	57
3.5. Land preparation and injecting anhydrous ammonia gas	58
3.6. Fertilizers application.	58
3.7. Treatment.	59
3.8. Soil and plant analysis	60
3.8.1. Soil analysis	60
3.8.1.1. Soil texture	61
3.8.1.2. Soil moisture	64
3.8.1.3. Soil bulk density	65
3.8.1.4. Soil pH	65
3.8.1.5. Soil Ec _e	
	66

Title

Page

3.8.1.6. Total Nitrogen (Kjeldahl method) in
SO11
3.8.1.7. Determination of Available Phosphorous in
soil (Olsen's method)
3.8.1.8. Determination of Soluble Sodium and
Potassium
3.8.1.9. Determination of Available Micronutrients.
3.8.1.9.1. DTPA Extraction Method
3.8.1.9.2. Measurement of Trace Element by
Atomic Absorption
Magnesium
Bicarbonate
3.8.1.13. Determination of Total Calcium
Carbonate
3.8.1.14 Determination of Cation Exchange
Capacity (CEC)
3.8.1.15. Exchangeable Sodium Percentage (ESP)
3.8.1.16. Soil organic matter
3.8.2. Plant analysis.
3.8.2.1. At maximum vegetative growth stage
3.8.2.2. At harvest stage
3.8.2.3. Pungency determination (pyruvic acid)
3.8.2.4. Proline content determination
3.8.2.5 Extraction of chlorophyll and total
carotenoids from plant
3.8.2.6. Gravimetric determination of sulfate
3.8.2.7. Determination of nitrogen
3.2.2.8. Determination of Phosphorous
3.2.2.9. Determination of Potassium
3.2.2.10. Determination of micro nutrients in
plant
3.2.2.11. Determination of total soluble
carbohydrate
3.2.2.12. Determination of total amino acids
3.2.2.13. Determination of free amino acid

Title Pages 99 3.2.3. Statistical analysis..... **Chapter 4: Results** 100 4.1. Effect of applied sulphur, nitrogen sources and organic 100 compost on onion plant at maximum growth stage..... 4.1.1. Effect of applied sulphur, nitrogen sources and organic compost on some parameters of onion plant at 100maximum growth stage..... 4.1.2. Effect of applied sulphur, nitrogen sources and organic compost on quantity of onion plant at maximum 101 growth stage..... 4.1.3. Effect of applied sulphur, nitrogen sources and organic compost on biochemical components of onion 105 plant at maximum growth stage..... 4.1.4. Effect of applied sulphur, nitrogen sources and organic compost on macronutrient elements of onion 108 plant at maximum growth stage..... 4.2. Effect of applied sulphur, nitrogen sources and organic 110 compost on onion plant at Harvest stage..... 4.2.1. Effect of applied sulphur, nitrogen sources and organic compost on macronutrient uptake of onion plant 110 at harvest stage..... 4.2.2. Effect of applied sulphur, nitrogen sources and organic compost on micronutrient contents of onion plant 113 at harvest stage..... 4.2.3. Effect of applied sulphur, nitrogen sources and organic compost on biochemical constituents of onion 115 plant at harvest stage..... 4.2.4. Effect of applied sulphur, nitrogen sources and organic compost on pungency and quality of onion plant 117 at harvest stage..... 4.2.5. Effect of applied sulphur, nitrogen sources and organic compost on yield and yield components of onion 120 plant at harvest stage..... 4.3. Effect of applied sulphur, nitrogen sources and organic 122 compost on some soil properties at harvest stage..... 4.4. Effect of applied sulphur, nitrogen sources and organic compost on macronutrients availability in salt affected soil at 126 harvest stage.....

Page

Title	Page
4.5. Effect of applied sulphur, nitrogen sources and organic compost on micronutrients availability in salt affected soil at	128
harvest stage	121
Chapter 5: Discussion	131
5.1. Principle role of applied fertilizers on onion nutrition	131
5.1.1. The role of sulphur addition on onion plant nutrition	132
5.1.2. The role of sulphur addition to the salt affected soil	136
5.1.3. Discussion the role of inorganic and organic nitrogen sources in onion plant nutrition	137
5.1.4. Discussion the role of inorganic and organic fertilizers in salt affected soil	141
Summary	145
Reference	147
Arabic summary	
Arabic abstract	

List of Tables

No	Title	Page
1	Some physical, chemical characteristics as well as fertility status of the studied soil	58
2	Some characteristics of the studied herbal plant residual compost	60
3	Specifications for preparing micronutrient standard solutions	74
4	Parameters for micronutrient estimation by AAS Some characteristics of onion plant grown in salt affected soil	96
5	applied with different rates of sulphur, nitrogen sources combinedwithcompostatmaximumgrowth	102
6	stage Onion plant quantity grown in soil applied with different rates of sulphur, nitrogen sources combined with compost at maximum growth stage	104
7	Biochemical components of onion plant grown in soil Applied with different rates of sulphur, nitrogen sources combined with compost at maximum growth stage	106
8	Macro nutrients contents for onion plant (leaves & Bulb) grown in soil applied with different rates of sulphur and nitrogen sources combined with compost at maximum growth	109
9	stage Macronutrients uptake and sulphur content in onion plant grown in soil applied with different sulphur rates and nitrogen sources combined with compost at harvest stage	111
10	Micronutrient contents in onion plant grown in soil applied with different sulphur rates and nitrogen sources combined with compost at harvest stage	114
11	Biochemical constituents in onion plant grown in soil applied at different sulphur rates and nitrogen sources combined with compost at harvest stage	116
12	Pungency and quality parameters of onion plant grown in soil applied with different sulphur rates and nitrogen sources combined with compost at harvest stage	119
13	Yield and yield components of onion plant grown in soil applied with different sulphur rates and nitrogen sources combined with compost at harvest stage	121
14	Effect of elemental sulphur, inorganic nitrogen sources and compost on some chemical properties of soil	123

No	Title	Page
15	Effect of elemental sulphur, inorganic nitrogen sources and compost on some soil cations	124
16	Effect of elemental sulphur, inorganic nitrogen sources and compost on some soil anions	125
17	Effect of elemental sulphur, inorganic nitrogen sources and compost on available macronutrients after harvest stage.	127
18	Effect of elemental sulphur, inorganic nitrogen sources and compost on available micronutrients after harvest stage.	129

Dogo

List of figures

No.	Title	Page
1	Onion growth stages onion growth stages	10
2	The sulphur cycle	23
3	The nitrogen cycle	32
4	Texture triangle showing the percentages of sand, silt and clay in the textural classes	63

List of Abbreviations

A.O.A.C.	Association of Official Agricultural Chamists
A.O.A.C. AAS	Association of Official Agricultural Chemists
	Atomic Absorption Spectroscope
ACSOs	S- Alkenyl Cysteine Sulfoxides
ACT	Aerated Compost Tea
BD	Bulk density
C/N ratio	Carbon- Nitrogen ratio
CEC	Cationic Exchangeable Capacity
CL	Clay Loam
СМО	Choline monooxygenase
cmole	Centimoles
DAP	Di- Ammonium Phosphate
df	dilution factor
DNA	Deoxyribonucleic Acid
DNPH	Di Nitro Phenyl Hydrazine
ds	Decisiemens
DTPA	Di-ethylene Tri-amine Penta Acetic acid
DW	Dry weight
EC	Electronic Conductivity
EDDHA	Ethylene di-amine-N,N'-bis(2-hydroxyphenylacetic acid)
EDTA	Ethylene di-amine tetra acetic acid
ESP	Exchangeable sodium percentage
FAO	Food and agriculture organization
Fed.	Feddan
FW	Fresh weight
GSH	Glutathione
MCSO	S- methyl- L- cysteine sulfoxide
meq	Melli equivalent
MSW	Municipal solid waste
MT	Megaton
NCT	Non aerated compost tea
NPK	Nitrogen, phosphorous and potassium
PCSO	S- propyl- L- cysteine sulfoxide
	IX

PRENCSO	Propenyl L- cysteine sulfoxide
QACs	Quaternary Ammonium Compounds
S.	Sulphur
SAR	Sodium adsorption rate
SAS	Soil associated standards
TCA	Tri chloro acetic acid
TDS	Total dissolved solids
TEA	Tri- ethanol amine
tRNA	Transfer ribonucleic acid
ZPC	Zero point of charge
γ-GP	γ- glutamyl peptides