Suez Canal University Faculty of Agriculture Animal Production Department

Effect of Different Dietary Supplemental Antioxidant Sources on Growing Rabbits Performance during Summer Season

By

Mahmoud Kamal Ahmed Hussein

B.Sc. Agric. Sci. (Animal Production) Faculty of Agriculture,

Suez Canal University, 2008

Thesis

Submitted in Partial Fulfillment of the Requirements

For the Degree of

MASTER OF AGRICULTURE SCIENCE

IN

POULTRY PRODUCTION

Animal Production Department

Faculty of Agriculture

Suez Canal University

2017

Effect of Different Dietary Supplemental Antioxidant Sources on Growing Rabbits Performance during

Summer Season

By

Mahmoud Kamal Ahmed Hussein

B.Sc. Agric. Sci. (Animal Production) Faculty of Agriculture, Suez Canal University, 2008

Thesis Submitted in Partial Fulfillment of the Requirements For the Degree of

MASTER OF AGRICULTURE SCIENCE IN POULTRY PRODUCTION

Supervision Committee

Prof. Dr. Soliman Ahmed Soliman Mahmoud	
Professor Emeritus of Animal Nutrition	
Faculty of Agriculture,	
Suez Canal University, Egypt.	
Dr. Tarik El-Said Kamel Mohamed Rabie	
Associate Professor of Poultry Breeding and Genetics,	
Faculty of Agriculture,	
Suez Canal University, Egypt.	
Prof. Dr. Ahmed Mohamed Ahmed Abd El Khalek	
Head researcher of Poultry Nutrition,	
Animal Production Institute,	
Agriculture Research Center, Egypt.	

APPROVAL SHEET

Effect of Different Dietary Supplemental Antioxidant Sources on Growing Rabbits Performance During Summer Season

By

Mahmoud Kamal Ahmed Hussein

B.Sc. Agric. Sci. (Animal Production) Fac. of Agric., Suez Canal Univ., 2008

This thesis for the M.Sc. Degree has been

Approved by:

1- Prof. Dr. Sobhy Mohamed Sallam	•••••
Professor of Animal Nutrition, Vice Dean for Community Ser- Environmental Development, Fac. of Agric., Alex. University.	
2- Dr. Haiam Sayed Abd El-Halim Ahmed	••••••
Associate Professor of Poultry Nutrition, Fac. of Agric., Suez	Canal University.
3-Prof. Dr. Soliman Ahmed Soliman Mahmoud	•••••
Professor Emeritus of Animal Nutrition, Fac. of Agric., Suez	Canal University.
4- Dr. Tarik El Said Kamel Mohamed Rabie	•••••
Associate Professor of Poultry Breeding and Genetics, Fac. of University.	Agric., Suez Canal

Date of examination: 25 / 9 / 2017

LIST OF CONTENTS

CONTENTS

page No.

CHAPTER 1: INTRODUCTION	1
CHAPTER 2: REVIEW OF LITERATURES	5
2.1. Heat stress	5
2.1.1. Heat stress and its depressing consequences on rabbit	
performance	5
2.1.2. Effect of heat stress on physiological parameters	13
2.2. Vitamin E	17
2.2.1. Structure of vitamin E	18
2.2.2.Vitamin E as an antioxidant	20
2.2.3. Vitamin E and productive performance	21
2.3. Selenium	25
2.3.1. Selenium as an antioxidant	26
2.3.2. Selenium and productive performance	27
2.4. Tannins	29
2.4.1. Structure of Tannins	29
2.4.2. Tannins as an antioxidant	30
2.4.3. Tannins and productive performance	31
2.5. Use of molecular markers and sodium dodecyl sulfate polyacrylamide	
gel electrophoresis (SDS-PAGE) in rabbits.	33
CHAPTER 3: MATERIALS AND METHODS	40
3.1. Experimental design and diets	40
3.2. Experimental animals	42
3.3. Management	43
3.4. Measurement and methods of interpreting results	43
3.4.1. Live body weight (g)	43
3.4.2. Feed intake (g)	43
3.4.3. Feed conversion ratio (kg feed/kg gain)	44
3.4.4. Metrological parameters	44

3.4.5. Viability rate	45
3.4.6. Slaughter traits	45
3.4.7. Blood sampling.	45
3.4.7.1. Triglycerides	45
3.4.7.2. Total cholesterol	46
3.4.8. Liver sampling.	47
3.4.8.1. Populations and Liver sample collections.	47
3.4.8.2. Protein Banding Patterns.	47
3.4.9. Statistical procedures	49
CHAPTER 4: RESULTS AND DISCUSSION	50
4.1. Growth performance	50
4.1.1. Effect of treatments on live body weight and weight gain	50
4.1.2. Effect of treatments on feed intake and feed conversion ratio	52
4.2. Effect of treatments on carcass characteristics	59
4.3. Effect of treatments on some physiological parameters	62
4.4. Viability rate	67
4.5. Ambient temperature	68
4.6. Economic efficiency:	70
4.7. Analysis of the separated protein bands.	72
CHAPTER 5: SUMMARY AND CONCLUSION	76
CHAPTER 6: REFERENCES	80
CHAPTERE 7: ARABIC SUMMARY	

LIST OF TABLES

Table No.	Description	Page No.
1	Summary of most important assessment for the effect of temperature on some production performance of rabbits	6
	temperature on some production performance of rabbits	U
2	Summary of most important assessment for the effect of	
	temperature on some physiological performance of rabbits	14
3	Comparison of commonly used genetic markers by Mburu and	
	Hanotte (2005).	36
4	Ingredients and calculated chemical composition of the basal diet.	42
5	Effect of dietary antioxidant supplements (per kg diet) on growth	
	performance of rabbits.	54
6	Effect of source and levels between dietary antioxidant	
	supplements (per kg diet) on growth performance of rabbits	58
7	Effect of dietary antioxidant supplements (per kg diet) on some	
	carcass traits percentages.	61
8	Effect of dietary antioxidant supplements (per kg diet) on some	
	blood plasma constitutes (mg/dl).	64
9	Effect of dietary antioxidant supplements (per kg diet) on	
	mortality number and viability.	67
10	Ambient temperature, humidity and THI during the experiment	
	period	69
11	Effect of dietary antioxidant supplements on economic	
	efficiency.	71

LIST OF FIGURES

Fig No.	Description	Page No
1	The structures of tocopherols and tocotrienols	18
2	The role of oxidative stress in obstetric and gynecologic conditions that contribute to infertility.	21
3	Basic pathways for Se metabolism in animals	26
4	Effect of dietary antioxidant supplements (per kg diet) on total live weight gain (g) of rabbits.	55
5	Effect of dietary antioxidant supplements (per kg diet) on total feed intake (g) of rabbits.	55
6	Effect of dietary antioxidant supplements (per kg diet) on feed conversion ratio of rabbits.	56
7	Effect of dietary antioxidant supplements (per kg diet) on total cholesterol (mg /dl).	65
8	Effect of dietary antioxidant supplements (per kg diet) on Triglycerides (mg /dl).	65
9	Effect of dietary antioxidant supplements (per kg diet) on HDL-cholesterol (mg /dl).	66
10	Effect of dietary antioxidant supplements (per kg diet) on LDL-cholesterol (mg/dl).	66
11	Effect of the different treatments on the bands for separated protein.	74
12	Effect of the different treatments on the bands for separated protein by Hot mapper Version 3	75

LIST OF ABBREVIATIONS

Abbreviations	Description
ALT	Alanine aminotransferase
Аро	Apo lipoprotein
AST	Aspartate aminotransferase
AT	Ambient temperature
BW	Body weight
CAT	Catalase
CF	Crude fiber
CFM	Concentrate feed mixture
CLA	conjugated linoleic acids
COAT	Chestnut wood extract coated with plant oils
СР	Crude protein
СТ	Condensed tannins
DM	Dry matter
DNA	deoxyribonucleic acid
EE	Ether extract
ENC	(supplied by Silva Extracts Italy)
FA	Fatty acids
FCR	Feed conversion ratio
FI	Feed intake
G	Globulins
g	Gram
g/d	Gram/day
GPx	Glutathione peroxidase
HDL	High- density lipoprotein
Н	Hour
НТ	Hydrolysable tannins
КО	knockout

LBW	Live body weight
LD	Longissimus dorsi
LDH	Lactate dehydrogenase
LDL	Low-density lipoprotein
MIN	Minute
NFE	Nitrogen Free Extract
NF _k B	Nuclear factor kappa B
NRC	National Research Council
Nrf2	Nuclear factor erythroid 2-related factor
NZW	New Zealand White rabbit
ОН	Hydroxyl radical
PCV	Packed cell volume
PUFA	Polyunsaturated fatty acids
RBC	Red blood cell
RH	Relative humidity
ROS	Reactive oxygen species
Se	Selenium
SNPs	single nucleotide polymorphisms
SSR	simple sequence repeats
TA	tannic acid
T ₃	Thyroid hormone
THI	Temperature-humidity index
TL	Total lipids
TMI	Transition metal ions
TNZ	The thermo-neutral zone
TP	Total protein
VLDL	Very-low-density lipoprotein
WBC	White blood cell
WG	Weight gain

Name	Mahmoud Kamal Ahmed Hussein	
	Effect of Different Dietary Supplemental Antioxidant Sources on	
Title	Growing Rabbits Performance during Summer Season	
Department	Animal production	
Faculty	Agriculture	
University	Suez Canal	
Post Graduate Studies	Master in Agriculture Science	
Date	25 / 9 / 2017	
Supervisors	Prof. Dr. Soliman Ahmed Soliman Mahmoud	
	Dr. Tarik El-Said Kamel Mohamed Rabie	
	Prof. Dr. Ahmed Mohamed Ahmed Abd El Khalek	
Registration date	February 2014	

ABSTRACT

The current study compared the effect of dietary supplementation of potential antioxidants (vitamin E, selenium and hydrolysable tannins) on growth performances, carcass traits, and some blood serum metabolites of seventy growing NZW rabbits reared during summer season (31.31±2°C). Weaned rabbits were equally distributed among seven dietary experimental treatments and fed ad libitum for eight weeks; a basal diet without supplemented antioxidants served as a control, the other six diets contained 100 or 200 mg vitamin E/kg diet, 0.1 or 0.2 mg Se/kg diet, 1.5 or 3.0 g hydrolysable tannins/kg diet. Results indicated that total live weight gain was not significantly affected by dietary treatments. Feed intake was significantly higher in control followed by vitamin E (100 mg/kg) groups, compared to other treatments. Feed conversion ratio was improved (P<0.05) with 0.1 mg Se/kg diet (14.2%) and with 1.5 g tannins/kg diet (16.1%) compared to the control. None of the studied dietary supplements significantly affected carcass traits or blood serum metabolites of the rabbits. In summer season, the dietary supplementation with vitamin E (100 mg/kg), selenium (0.1 mg/kg diet) or tannins (1.5 g/kg diet) only improve rabbits feed conversion ratio.

Key words: Rabbit, vitamin E, selenium, tannins, summer, growth.