Kafrelsheikh University Faculty of Veterinary Medicine Department of Virology

Trials for preparation of a combined inactivated oil emulsion vaccine against avian influenza virus H9N2 strain and infectious bronchitis virus in chickens

A thesis presented by Ramy Mahmoud Abd El-Naby El-Seify

B. V. Sc., Faculty of veterinary medicine, Kafrelsheikh university, Egypt, 2012.

For the Master Degree in Veterinary Medical Science (Virology)

Under The Supervision Of

Prof. Dr. Gabr Fikry El-Bagoury Professor of virology Faculty of veterinary medicine Benha University, Egypt

Dr. Owis Jalal Affan Salman Senior researcher Newcastle disease department Veterinary serum and vaccine research institute, Abbassia, Cairo, Egypt

Dr. Noura Fysal Morsy Al-Khalefa Lecturer Of virology Faculty of veterinary medicine, Kafrelsheikh University, Egypt

List of contents

Title	Page
1.Introduction	1
2.Review of literature	5
2.1. Avian Influenza Virus	5
2.1.1. History of AIV world wide	5
2.1.2. History of H9N2 in Egypt	6
2.1.3. Definition and classification of Avian influenza Virus (AIV)	7
2.1.4. Morphology and structure of AIV	9
2.1.5. Protein structure of the AIV	10
2.1.6. Effect of physical and chemical agents on AIV	12
2.1.8. Avian influenza antigenicity	14
2.1.8.1. Antigenic drift	15
2.1.9.2. Antigenic shift	17
2.1.10. Cultivation of AIV	18
2.1.10.1. Cultivation in embryonated chicken eggs	18
2.1.9.2. Cultivation in cell culture	19
2.1.10. Tests used for detection of AI antigen and antibodies	19
2.1.10.1 Viral reisolation using SPF ECE	19
2.1.10.2. Agar gel immunodiffusion (AGID) (an alternative test for international trade)	20
2.1.10.3. Haemagglutination and haemagglutination inhibition tests	20
2.1.10.4. Enzyme-linked immunosorbent assay (ELISA)	20
2.1.10.5. Direct RNA detection	21
2.1.10.6. Challenge test and viral shedding	21
2.1.11. Economic importance and control of AIV	22
2.1.12. Immune response against AIV	22
2.1.12.1. Innate Immunity	23
2.1.12.2. Humoral Immune-response	23
2.1.12.3. Mucosal immunity against AIV	25
2.1.12.4. Cellular immunity	25

Title	Page
2.1.13. Vaccines and vaccination	27
2.1.13.1. Types of vaccines	28
2.1.13.1.1. Inactivated vaccine	28
2.1.13.1.2. Vector based vaccines	30
2.1.14. Adjuvant	31
2.1.14.1. Oil adjuvants	31
2.1.14.1.1. Paraffin oil adjuvant	32
2.1.14.1.2. Montanide oil adjuvants	32
2.2. Infectious bronchitis virus (IBV)	34
2.2.1. History of IBV in the world	34
2.2.2. History of IBV in Egypt	36
2.2.3. Definition and classification of infectious bronchitis	39
2.2.4. Classification and toxonomy	40
2.2.5. Morphology and structure of IBV	41
2.2.6. Resistance to chemical and physical agents	44
2.2.7. Pathogencity and pathogenesis	45
2.2.8. Haemagglutination activity of IBV	45
2.2.9. Cultivation of IBV	46
2.2.9.1. In embryonated chicken eggs	46
2.2.9.2. Cultivation on cell culture	46
2.2.9.3. Using chicken organ culture	47
2.2.10. Tests used for detection of IBV antigen and antibodies	47
2.2.10.1. Agar gel precipitation test (AGPT)	47
2.2.10.2. Enzyme linked immunosorbent assay (ELISA)	48
2.2.10.3. Immunofluorescent assay (IFA)	48
2.2.10.4. Virus neutralization test (VNT)	48
2.2.10.5. Haemagglutiantion Inhibition test (HI)	49
2.2.10.6. Detection of IBV genome	50
2.2.11. Economic importance of IB	51
2.2.12. Immune- response against IBV	52
2.2.12.1. Innate immunity	54

Title	Page
2.2.12.2. Humoral immunity	55
2.2.12.3. Mucosal immunity	55
2.2.12.4. cell-mediated immunity	56
2.2.13. Vaccines and vaccination	57
2.2.13.1. Live vaccine	57
2.2.13.2. Inactivated vaccines	60
2.2.13.3. Recombinant vaccines	61
3. Material and methods	63
3.1. Material	63
3.1.1. Viruses	63
3.1.1.1. Avian influenza virus	63
3.1.1.2. Avian infectious bronchitis virus strains	63
3.1.2. Fertile eggs	63
3.1.3. Chickens	64
3.1.4. Materials used during vaccine preparation	64
3.1.5. Buffers and solutions	65
3.1.6. Media used for sterility testing of the virus seed and prepared vaccines	65
3.1.7. Materials used for haemagglutination and haemagglutination inhibition tests	67
3.1.8. Material used for Real Time PCR	67
3.1.8.1. Material used for extraction of RNA	67
3.1.8.2. Equipments and apparatuses used for real time PCR	67
3.1.8.3. Equipment and apparatuses used for extraction of RNA	68
3.1.8.4. Primers used in Real Time PCR	69
3.1.9. Materials used for ELISA test	69
3.2. Methods	70
3.2.1.1. Preparation of H9N2 virus for vaccine formulation	70
3.2.1.1.1. Virus propagation	70
3.2.1.1.2. Titration of the propagated AI virus	70
3.2.1.1.3. Virus inactivation	71

Title	Page
3.2.1.1.4. Completion of inactivation:	71
3.2.1.2. Preparation of IB viruses for vaccine formulation	71
3.2.1.2.1. Propagation of the 3 strains of IB virus	71
3.2.1.2.2. Titration of the 3 IBV strains	72
3.2.1.2.3. Virus inactivation of 3 IBV strains	72
3.2.1.2.4. Completion of inactivation of IBV strains	72
3.2.1.3. Preparation of Oil emulsion vaccines	72
3.2.1.3.1. Monovalent vaccines	72
3.2.1.3.2. Combined vaccines	73
3.2.1.4. Sterility and safety tests of the prepared vaccines	74
3.2.1.5. Experimental design	75
3.2.1.5.1. Vaccination of birds	75
3.2.1.5.2. Collection of serum samples	75
3.2.1.5.3. Tests to detect the Immune-response against viruses	76
3.2.1.5.3.1. Haemagglutination inhibition (HI) test	76
3.2.1.5.3.2. ELISA test	77
3.2.1.5.3.3. Challenge test for the prepared vaccines	78
3.2.1.5.3.3.2. Real time PCR	79
3.2.1.5.3.3.2.1. Method of extraction of Avian Influenza virus RNA according to QIAamp Viral RNA Mini handbook	79
3.2.1.5.3.3.2.2. Preparation of PCR Master Mix according to QuantiTect probe RT-PCR kit handbook	80
4. Results	82
4.1. Virus propagation and titration	82
4.1.1. Titration of Avian Influenza Virus subtype H9N2	82
4.1.2. Titration of infectious bronchitis virus	82
4.2. Inactivation and completion of inactivation	83
4.3. Sterility and safety tests	83
4.4.1. Haemagglutination inhibition test	84
4.4.2. Evaluation of immune response of vaccinated chickens to IBV by ELISA test	87
4.4.3.1. Real Time PCR after Challenge against AIV	89

Title	Page
4.4.3.2. Results of Real time PCR after Challenge against IBV	91
4.4.3.3. Estimation of protection percentage for each vaccine type:	92
5. Discussion	94
6. Conclusion	104
7. Summary	105
8. References	108
الملخص العربي	

LIST OF TABLES

Table 1	Oligonucleotide primers and probes used for
	Real time PCR
Table 2	List of groups used in experiments and type of
	vaccine used for each group
Table 3	Preparation of PCR master mix according to
	quantitatect prob RT-PCR kit
Table 4	Cycling conditions of Primers and probes used
	in Real time PCR
Table 5	Titers of three infectious bronchitis virus strains
Table 6	Results of safety and sterility tests of different
	prepared inactivated vaccines
Table 7	Mean AI-HI antibodies titers in vaccinated
	chickens with monovalent H9N2 vaccine and 3
	different combined vaccines
Table 8	Antibody titers to different IBV vaccines using
	ELISA Test.
Table 9	Real time PCR for shedding for detection of
	H9N2 RNA copies of vaccinated groups with
	both monovalent H9N2 vaccine and different
	combined vaccines at 2nd, 4th and 6th days post
	challenge
Table 10	Real time PCR for detection of IBV RNA
	copies of vaccinated groups with both
	monovalent IBV vaccine and different
	combined vaccines at 2nd, 4th and 6th days post
	challenge
Table 11	Protection percentage for each vaccinated and
	non vaccinated chicken groups after challenge
	with either AIV or IBV.

LIST OF ABBREVIATIONS

Abbreviation	Complete word
AGPT	Agar Gel Preceptation Test
AHRI	Animal Health Research Institute
AI	Avian Influenza
AIV	Avian Influenza Virus
BPL	Beta Probiolactone
СЕК	Chicken Embryo Kidney
СРЕ	Cytopathic effect
СТ	Cycle Threshold
CTLs	Cytotoxic T-Lymphocyte
ECE	Embryonated Chicken Egg
EDS	Egg Drop Syndrome
EID ₅₀	Embryo Infective Dose 50%
ELISA	Enzyme Linked Immuno-sorbant Assay
EM	Electron Microscope
FAO	Food Agriculture Organization
FC	Fowl Cholera
HA	Haemagglutinin
HA Test	Haemagglutination Test
HAU	Haemagglutination Unit
HI or HAI	Haegglutination Inhibition
HPAI	Highly Pathogenic Avian Influenza
Hrs	Hours
HVR	Hyper Variable Region
IB	Infectious Bronchitis
IBV	Infectious bronchitis virus
IBD	Infectious Bursal Disease
IF	Interferon
IFA	Imunoflourescence assay
Ig	Immunoglobulin
ĪĹ	Interleukin
ILT	Infectious Laryngeotrachitis
ISA	Incomplete SEPIC Adjuvant
IU	International Unit
IZSVe	Istituto Zooprofilattico Sperimentale delle
	Venezie
LPAI	Low Pathogenic Avian Influenza
MABs	Monoclonal antibodies
Mass	Massachusetts
MBL	Manos binding lectin

MDCK	Madin-Darby Canine Kidney
MHC	Major Histocomptability Complex
min	Minutes
μL	Microliter
MPAI	Mild Pathogenic Avian Influenza
NA	Neuraminidase
NAI	Notifiable Avian Influenza
NAMRU-3	Naval Medical Research Unit No. 3
ND	Newcastle Disease
NI	Neutralization Index
NK	Natural Killer Cell
NP	Nucloprotein
OE	Oil Emulsion
OIE	The Office International des Epizooties
ORFs	Open reading Fram
PAMPs	Pathogen Associated Molecular Pattern
PCR	Polymerase Chain Reaction
PI	Post Inoculation or Post Infection
P.M	Post Mortum
PRRs	Pattern Recognition Receptors
PV	Post Vaccination
RBCs	Red Blood Cells
RFLP	Restriction fragment length polymorphism
RNP	Ribonucloprotein
rpm	Round Per Minute
RT-PCR	Real Time Polymerase Chain Reaction
S1	Spike glyoprotein 1
SAN	Specific Antibodies Negative
SNT	Serum Neutralization Test
SPF	Specific Pathogen Free
TCR	T- Cell Receptor
TLR	Toll Like Receptor
TOCs	Tracheal organ cultures
UK	United Kindom
USA	United States Of America
VN	Virus Neutralization
VNT	Virus neutralization test
VSVRI	Veterinary Serum and Vaccine Research Institute
WPV	Week Post Vaccination
W/O	Water in Oil
WHO	World Health Organization

7. Summary

Avian infectious bronchitis and Avian Influenza subtype H9N2 are from the most important diseases that affect chickens in all ages causing high economic losses. In this study, five different inactivated OE combined and monovallent vaccines were prepared against AIV H9N2 and/or IBV.

Avian influenza H9N2 (A\chicken\Egypt\D4692A\2012) and 3 strains of IBV (M41, H120 and Giza -291-F-2012 variant IBV strain) were propagated and titrated and used for preparation of 3 combined vaccine and 2 monovallent vaccines. Combined vaccine 1 contain AIV H9N2 and 3 strains of IBV (H120, M41 and variant IBV), Combined vaccine 2 contain AIV H9N2 and variant IBV only, combined vaccine 3 contain IBV (H120 and M41) and AIV H9N2, monovallent H9N2 and monovallent variant IBV vaccine by using Montanide ISA 70 oil as adjuvant.

The prepared vaccines were subjected to sterility and safety tests and revealed that they free from any bacterial or fungal growth with no local or systemic finding after double dose vaccination.

The immune response of the prepared vaccines was followed up in SPF chickens for 16 weeks.

HI test was carried out on serum samples that obtained from chickens that vaccinated by combined vaccine 1, 2, 3 (contain AIV H9N2) and monovallent AIV H9N2 vaccine, the results revealed that the antibody titer begin to appear from the 1st WPV and reach to its peak (9.8 \log_2) at 5^{th} WPV in group (1) vaccinated by combined vaccine 1, while group (2) vaccinated by combined vaccine 2 showed peak antibody titer at 4^{th} WPV (10 log₂). At 5^{th} WPV, the antibody titer peak was attained for both groups (3) (vaccinated by combined vaccine 3) and (4) (vaccinated by monovalent H9N2 vaccine) and it was 10.5 log₂ and 8.6 log₂ respectively.

ELISA test was carried out on serum samples obtained from groups vaccinated with combined and monovallent vaccines containing IBV viruses.

Group vaccinated by combined vaccine 1 and combined vaccine 2 showed peak of antibody titer at 12th WPV (2314 and 1890 respectively), while group vaccinated by combined vaccine 3 showed increase in antibody titer till reach to its peak (2292) at 16th WPV, but group vaccinated by monovallent IBV vaccine reached to peak of antibody titer (1772) at 12th WPV.

Results of challenge test demonstrated that the vaccine protect chickens in percentage of 100% in combined vaccine 1 and combined vaccine 3 when challenged against H9N2 and IBV viruses and in percentage of 90% in combined vaccine 2 when challenged against IBV and monovallent H9N2 vaccine when challenged against H9N2, while the vaccine protect the chickens in percentage of 80% in monovallent IBV vaccine.

There were no viral shedding of AIV in groups vaccinated with combined vaccine 1 and 3 in days 2, 4 and 6 post challenge against AIV H9N2, while little viral shedding was observed in group 4 that vaccinated with monovallent H9N2 at days 2 and 4 and group vaccinated with combined vaccine 2 at day 2 post challenge against H9N2 with high viral shedding in control non vaccinated group.

Shedding of IBV was very little in group vaccinated with combined vaccine 2 at day 4 post challenge and in group vaccinated with monovallent IBV vaccine, while no viral shedding of IBV in other group at day 2, 4 and 6 post challenge except control non vaccinated group that showed high viral shedding.

6.Conclusion

From this study results, it could be concluded that, all of the five prepared vaccines proofed to be sterile, safe and potent. The combined vaccines gave higher immune response than monovalent ones. The combined vaccine 1 (that contained AIV H9N2 and three IBV strains, M41, H120 and variant) and combined vaccine 3 (that contained AIV H9N2 and two IBV strains, H120 and M41) were the most protective ones where it gave 100% protection against both variant IBV and AIV H9N2 challenge and no viral shedding compared to combined vaccine 2 (that contained AIV H9N2 and IBV strains).