CONSTRUCTION OF A LOCAL MACHINE FOR CHOPPING RESIDUES OF BANANA PLANTS

BY

AHMED EL-SAID ABD EL-MAGID ATIA MOWAFY

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (Agricultural Engineering)

Agricultural Engineering Department Faculty of Agriculture Zagazig University

2017

CONTENTS

	No.
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Different Utilization of Crops Residues	3
2.2. Chopping Machines for Crop Residues	9
2.3. Effect of different parameters on chopping machines	
performance	11
2.4. Power and energy requirements	19
2.5. Cost calculations for operating chopping machines	24
3. MATERIAL AND METHODS	26
3.1. Materials	26
3.1.1. Banana plant	26
3.1.2. Constructed chopping machine	27
3.1.2.1. Feeding unit	27
3.1.2.2. Cutting unit	27
3.1.2.3. Electric motor	32
3.1.2.4. Frame	32
3.1.3. Measuring instruments	33
3.2. Methods	34
3.2.1. Experimental conditions	34
3.2.2. Measurements and determinations	34
3.2.2.1. Theoretical chopper capacity	35
3.2.2.2. Chopping machine productivity	35
3.2.2.3. Chopper efficiency	35
3.2.2.4. Power and specific energy requirements	36
3.2.2.5. Costs calculations	36
	1

4. RESULTS AND DISCUSSION	38
4.1. Chopper productivity	38
4.2. Chopper efficiency	40
4.3. Required power	43
4.4. Specific energy	46
4.5. Chopping operational cost	48
5. SUMMARY AND CONCLUSION	52
6. REFERENCES	59
7. APPENDIX	67
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	No.
1	Some physical and chemical characteristics of the	
	pseudo stem Maghrabi banana plant	26
2	Effect of feeding rate, chopping drum speed and	
	moisture content under different knife shapes on	
	chopping machine productivity	67
3	Effect of feeding rate, chopping drum speed and	
	moisture content under different knife shapes on	
	chopping efficiency	68
4	Effect of feeding rate, chopping drum speed and	
	moisture content under different knife shapes on the	
	required chopping power	69
5	Effect of feeding rate, chopping drum speed and	
	moisture content under different knife shapes on the	
	specific energy requirements	70
6	Effect of feeding rate, chopping drum speed and	
	moisture content under different knife shapes on	
	chopping operational cost	71

LIST OF FIGURES

No.	Title	No.
1	Parts of constructed chopping machine	28
2	Elevation, plan and side view of banana chopping	
	machine	29
3	Elevation and plan of cutting drum knives	30
4	Elevation, plan and side view of cutting knives	31
5	Effect of feeding rate, chopping drum speed and	
	different moisture content under two knife edge	
	shapes on chopper productivity	39
6	Effect of feeding rate, chopping drum speed and	
	different moisture content under two knife edge	
	shapes on chopper efficiency	41
7	Effect of feeding rate, chopping drum speed and	
	different moisture content under two knife edge	
	shapes on required power	44
8	Effect of feeding rate, chopping drum speed and	
	different moisture content under two knife edge	
	shapes on specific energy requirement	47
9	Effect of feeding rate, chopping drum speed and	
	different moisture content under two knife edge	
	shapes on chopping operational cost	49
	•	

ABSTRACT

Experiments were carried out during two seasons of 2015/2016 and 2016/2017 in El-Kassasin Horticultural Res. Station, Ismailia Governorate, Egypt to determine the proper conditions of the constructed banana chopper.

The objectives of the present research may be summarized as follows:

- **1.** Construct a local machine for chopping apparent trunk of banana plants.
- **2.** Study some operating parameters (feeding rate, chopping drum speed, shapes of knife edge and moisture content of pseudo stem) affecting the performance of the constructed machine.
- **3.** Evaluate the constructed machine from the economic point of view.

Experiments were conducted under the following variables: chopping drum speeds of 16.74, 19.88, 23.02 and 26.16 m/s (800, 950, 1100 and 1250 rpm), feeding rates of 600, 700, 800 and 900 kg/h and moisture contents (w.b.) of banana pseudo stem (93, 91.4, 88 and 86%) and two types of knife (smooth and serrated chopping knife edges). in order to obtain high productivity, reduce in specific energy and cost values. Evaluation of the constructed chopping machine performance was achieved taking into consideration the following indicators: machine productivity, chopping efficiency, power and specific energy requirements and chopping operational costs.

Experimental results revealed that productivity, chopping

efficiency, power, specific energy and operational costs were in the optimum region by using of the constructed banana chopper under the following recommended conditions:

- Operate the chopper at drum speed of 26.16 m/s (1250 rpm).
- Feeding rate should be ranged from 700 to 800 kg/h.
- Moisture content of banana pseudo stem was 86%.
- Use serrated knife edge was better than smooth edge for chopping banana pseudo stem to obtain highest productivity, least specific energy and cost values.