

Studies on The Recent Isolate of Lumpy Skin Disease virus

Thesis Presented by

Naguib Mohammed Mahmoud Abd El-Wahab

B.V.Sc., Beni-Suef University (2006) For M.V.Sc. degree (Virology)

Under Supervision of

Prof. Dr. Sabry Mohammed Tammam

Professor and Head of Virology Department Faculty of Veterinary Medicine- Beni-Suef University

Dr.

Khaled Ahmed Mohammed Shokier

Senior Researcher - Animal Health Research Institute Beni-Suef Branch

(2016)

List of contents

The list	page
1. Introduction	1
2.Review of litrature	5
2.1. Geographical distribution	5
2.2. General Properties of LSDV	14
2.2.1. Classification of LSDV	14
2.2.2. Genome of LSDV	19
2.2.3. LSDV proteins	24
2.2.4. Physicochemical propereties of LSDV	26
2.3. Virus replication	28
2.4. Antigenic relationship	31
2.5. Host susceptibility	35
2.6. Transmission of LSDV	38
2.7. Clinical signs	43
2.8. Immunity to LSDV	48
2.8.1. Passive immunity	48
2.8.2. Active immunity	48
2.9. Laboratory diagnosis	48
2.9.1. samples for virus isolation	50
2.9.2. Virus isolation	50
2.9.2.1. Propagation on tissue culture	50
2.9.2.2. Isolation of LSDV on CAM of ECE	54
2.9.3. Serodiagnosis	57
2.9.3.1. Agar gel perception test	57
2.9.3.3. Serum neutralization test	58
2.9.3.4. Enzyme linked immunosorbant assay	60
2.9.3.5. Florescent antibody technique	61
2.9.4. Molecular diagnosis	61
2.10. Vaccine and vaccination	63

2.10.1. Live attenuated vaccine	63
2.10.1.1 Live attenuated sheep pox vaccine	63
2.10.1.2. Attenuated LSDV vaccine	65
2.10.2. Inactivated LSDV vaccine	67
2.10.3. Recombinant LSDV vaccine	68
3. Material and Methods	71
3.1. Material	71
3.1.1. Samples	72
3.1.2. ECE	72
3.1.3. Cell culture	72
3.1.4. Cell culture media and solutions	72
3.1.4.1. Newly born calf serum	72
3.1.4.2. Eagls Minimum Essential Media	72
3.1.4.3. Antibiotic solution	72
3.1.4.4. Bicarbonate solution	73
3.1.4.5. Trypsin solution	73
3.1.5. Flourescen conjugate	73
3.1.6. DNA Extraction	74
3.1.6.1. Phosphate buffer saline	74
3.1.6.2. Proteinase K	74
3.1.6.3. Lysis Enhancer	74
3.1.6.4. Ethanol	74
3.1.6.5. Buffer TB	74
3.1.6.6. Wash buffer	74
3.1.6.7. Elution buffer	74
3.1.7. Detection of LSDV using PCR assay	75
3.1.7.1. Tris-EDTA	75
3.1.7.2. Nuclease free water	75
3.1.7.3. Oligonucleotide primers	75
3.1.7.4. Extracted viral DNA	76
3.1.7.5. Tag PCR core kit	76

3.1.8. Analysis of amplified DNA	76
3.1.8.1. Agarose	76
3.1.8.2. Tris acetic acid EDTA	76
3.1.8.3. Ethedium Bromide	76
3.1.8.4. 100 bp DNA ladder	77
3.1.8.5. Gel loading buffer	77
3.1.9. Sequencing of amplified DNA product	77
3.1.9.1. Amplified PCR product	77
3.1.9.2. Oligonucleotide primers	77
3.1.9.3. Sequence analysis	77
3.1.9.3.1. Sequence results	77
3.1.9.3.2. Highly similar sequences	78
3.1.9.3.3. BioEDIT version 7.0.4.1	78
3.1.9.3.4. MEGA 5.05 software	78
3.1.10. Histopathology	78
3.2. Methods	79
3.2.1. Sample preparation for virus isolation	79
3.2.2. Virus isolation on CAM of ECE	79
3.2.3. Infectivity titer of isolated virus	80
3.2.4. Propagation of LSDV on MDBK cells	80
3.2.5. IFAT	80
3.2.6. Histopathology	81
3.2.7. Detection of suspected LSDV viral genome	82
3.2.7.1. Extraction of LSDV-DNA	82
3.2.7.2. Amplification of LSDV gene	83
3.2.8. Analysis of PCR product by agarose gel electrophoresis	84
3.2.8.1. Agarose gel preparation	84
3.2.8.2. Loading of PCR product in the gel	84
3.2.8.3. Electrophoresis time and voltage	85
3.2.8.4. Visualization of the PCR amplified product in the gel	85
3.2.9. Gene sequence and sequence analysis	85

4. Results	87
4.1. Results of virus isolation on CAM of ECE	87
4.2. Results of virus titration	89
4.3. Results of virus propagation on MDBK cells	89
4.4. Virus identefecation	90
4.4.1. IFAT	90
4.4.2. Histopathology	91
4.5. Results of PCR	92
4.6. Sequence analysis	93
4.6.1. Results of sequencing	93
4.6.2. BLAST analysis	93
4.6.3. Multiple sequence alignment	93
5. Discussion	99
6.Summary	105
7. References	106
الملخص العربي .8	1

List of tables

Table	Title	Page
1	Primers used in amplification of GPCR gene of	75
	LSDV	
2	The cycling protocol of PCR for amplification	83
	of GPCR gene of LSDV	
3	Result of isolation of suspected virus from skin	87
	nodules of cattle on CAM of ECE	
4	Infective titers of isolated virus	89
5	Deduced nucleotide and amino acid identities	97
	of Egypt BSU-1/2012 and of Egypt BSU-	
	2/2012 isolates compared to selected	
	sequences	

List of figures

figure	title	page
1	Morphological structure of LSDV	19
2	Schematic diagram of DNA of LSDV	23
3	Linear map of LSDV genome	24
4	Lesions of suspected LSDV on infected animals	71
5	Characteristic pock lesion on infected CAM	88
6	Normal MDBK cells	89
7	Infected MDBK cells	90
8	Intracytoplasmic flourescen granules	90
9	Intracytoplasmic inclusion bodies in sections of	91
	infected CAM	
10	Gel electrophoresis of PCR products using LSDV	92
	specific primer set	
11	Deduced nucleotide of GPCR gene of LSDV	94
	compared with other related sequences	
12	Deduced amino acids of GPCR gene of LSDV	96
	compared with other related sequences	
13	Phylogenetic tree of GPCR gene of LSDV	98

Summary

This study aimed to isolate, identify, molecular characterize of LSDV and trial for clarification of the reasons for appearance of LSD in vaccinated cattle in Egypt through:

- Collection of intracutaneous skin nodules from clinically diseased, previously vaccinated cattle suspected to be LSD.
- Isolation of suspected sample on CAM of ECE for three successive passages which gave characteristic pock lesion after the first passage and become clear after the third passage.
- Titration of the isolated virus on ECE. The titer was calculated and found to be 7.6 Virus titer $\log_{10} \text{EID}_{50}$.
- Propagation of the isolated virus on MDBK cells for four successive passages with appearance of clear cytopathic effect.
- IFAT was done confirming that the isolated samples are LSDV.
- Histopathological examination for lesions on CAM revealed presence of intracytoplasmic inclusion bodies.
- PCR is done using a newly designed specific primer set for GPCR gene of LSDV. A 554 bp band appear confirming presence of LSDV.
- Gene sequenc, sequence analysis and multiple sequence alignment was done and revealed two new isolates of LSDV (LSDV Egypt/BSU-1/12 and LSDV Egypt/BSU-2/12).
- The two new isolates have recorded in gene bank with accession numbers kj561442 and kj561443 respectively.
- The two new isolates share a high degree of similarity with LSDV Egypt/89 Ismalia strain and other field isolates while this similarity decreased with The Roumanian vaccinal strain.