

Zagazig University Faculty of Science

Evaluation of Some Fungal Metabolites

as Alternatives Pesticides in Control

Aphis gossypii Glover

A Thesis Submitted

By Noha Hassan Essam El-Din Metwally Lokma

> B.Sc. Special Microbiology (1999) M.Sc. (2010)

For the Requirement of the Degree of Doctor of Philosophy in Science (Microbiology)

> Botany Department Faculty of Science Zagazig University

> > 2016

	Page
List of Tables	V
List of Figures	IX
List of Plates	XIV
List of Abbreviations	XV
Introduction	1
Aim of the Work	4
Review of Literature	
I- Entomopathogenic fungi	5
II- Biological studies	12
III- Toxicological studies	13
III.1. Fungi as biocontrol agents	13
III.2. Insecticides; bio insecticides and their mixture with	
entomopathogenic fungi as insecticidal agents	20
IV- Strategies for the prevention and control of insects by fungi	24
V- Biochemical studies	28
V.1. Total Soluble Protein	28
V.2. Transaminase enzymes	30
V.3. Carbohydrates hydrolyzing enzymes	32
VI- Insect cuticle hydrolyzing enzymes	35
VII- Factors affecting the growth of entomapathogenic fungi	46
VIII- Histological and ultrastructure studies	50
Material and Methods	53
I- Isolation and identification of fungi	53
I.1. Isolation of fungi from soil	53
I.2. Isolation of fungi from insect cadavers	55
I.3. Isolation of fungi from infected plants	56
II- Biological studies	56
II.1. Rearing technique for the insect	56
II.2. Biological studies	57
III- Toxicological studies	57
III.1. Leaf dipping technique	57
III.2. Treatments	58
III.3. Calculations	60
VI- Biochemical studies	62
V. Detection of cuticle degrading enzymes	65

Contents

V.1. Detection of lipase activity	66
V.2. Detection of chitinolytic activity	57
V.3. Detection of protease enzyme activity	70
V.4. Determination of the extracellular protein	71
VI- Factors affecting biomass and cuticle degrading enzymes	
production by T. hamatum7	2
VII- Preparation of extracellular (lipase, proteas, chitinas)7	7
VII.1. Crude enzyme fractional precipitation by ammonium	
sulphate	7
VII.2. Kinetic properties of the crude lipase, proteas, chitinas7	78
VIII- Purification of protease produced by Trichoderma hamatum8	30
VIII.1. Preparation of cell free filtrate	30
VIII.2. Fractional precipitation by ammonium sulphate	31
VIII.3. Dialysis against tap water and sucrose	31
VIII.4. Sephadex G-100 gel chromatography technique	32
VIII.5. Analysis of the purified protease	33
IX- Light and electron microscopy	35
Experimental Results	
Part (1)	
I- Fungi recovered in the present investigation	37
II- Biological studies	91
III- Toxicological studies	94
III.1. Toxicity data of isolated tested fungi against cotton aphids Aphiss	
gosypii under laboratory condition	94
III.2. Latent effect of isolated fungi compared by bio and chemical	
insecticides on biological aspects of adult stage and number of nymphs of	of
cotton aphids under sub laboratory conditions (at recommended	
concentration)	97
III 2 Determination of Contraction of the section o	05
III.3. Determination of Co-Toxicity factors(joint action studies)	05
VI- Biochemical studies	13
VI- Biochemical studies	13 13
VI- Biochemical studies	13 13 13
III.3. Determination of Co-Toxicity factors(joint action studies)	13 13 13

Part (2)

V- Factors affecting growth and lipase, protease and chitinase activities of
<i>T. hamatum</i>
V.1. Effect of incubation period on biomass production and lipase, protease
and chitinase activity of <i>T. hamatum</i>
V.2. Effect of initial pH value on biomass and lipase, protease, chitinas
activity of <i>T. hamatum</i> 129
V.3. Effect of an incubation temperature on biomass production and lipase,
protease, chitinase activity of <i>T. hamatum</i>
V.4. Effect of different volumes of the fermentation medium on the growth
and lipase, protease, chitinase activity
V.5. Effect of different lipids and other carbon substrates on biomass and
lipase activity of <i>Trichoderma hamatum</i>
V.6. Effect of different carbon sources on biomass production and protease
activity <i>T. hamatum</i> 143
V.7. Effect of different carbon sources on biomass production and chitinase
activity of <i>T. hamatum</i> 147
V.8. Effect of different nitrogen source on biomass production and lipase,
protease, chitinase activity of <i>T. hamatum</i> 151
V.9 Effect of different concentrations of KH ₂ PO ₄ on dry biomass
production, lipase, protease, chitinase activity of <i>T. hamatum</i>
V.10 Effect of different concentration of KCl on the growth and lipase,
protease, chitinase activities of <i>T. hamatum</i> 165
V.11 The effect of different concentrations of MgO ₄ .7H ₂ O on the growth
and lipase, protease, chtinase, activities of Trichoderma hamatum168
V.12 Effect of different micro elements on the growth and lipase
production by <i>T. hamatum</i> 171
VI- Fractional precipitation of crude lipases protease, chitinase of
Trichoderma hamatum with ammonium sulphate175
VII- Factors affecting Crude Lipase, protease, chitinase obtained from
Trichoderma hamatum
VII.1. Effect of reaction temperature on lipase, protease, chitinase activity
of <i>T. hamatum</i>
VII.2. Thermal stability of lipase, protease, chitinase of <i>T. hamatum</i> 183
VII.3. Effect of pH value of the reaction mixture on lipase, protease,
chitinase activity of <i>T. hamatum</i>

VII.4. Effect of pH values on the stability of Trichoderma hamatum lipa	ıse,
protease chitinase	191
VII.5. Effect of reaction time on lipase, protease, chitinase activities of	Т.
hamatum	194
VII.6. Effect of enzyme concentration on the activities of <i>T. hamatum</i>	
lipase, protease, chitinase	197
VII.7. Kinetic properties and Effect of substrate concentration on	
Trichoderm hamatum lipase, protease and chitinase	
activities	201
VII.8. Effect of some chemicals on lipase, protease, chitinase activities	of
Trichoderma hamatum	204
VIII- Purification, and analysis of protease produced by <i>Trichoderma</i>	
hamatum	207
VIII.1. Purification of protease	207
VIII.2.Analysis of the purified protease	212
Part (3)	
IX. Biocontrol potential of Trichoderma hamatum against	
Aphis gossypii	215
IX-1- Biological control of <i>A. gossypii</i> by conidial suspension and two	
pure proteases fractions (I and II) of <i>T. hamatum</i> compared by two	
commercial bioinsecticides (Biovar and Bioranza) at different	
concentrations	215
IX-2- Latent effect of Trichoderm hamatum and its protease I,П enzym	es
on some biological aspect of adult stages of cotton aphid (Aphis gossyp	vii)
during life span	219
IX.3. Histological and ultrastructure studies	225
IX.3.1. Light microscope examination	225
IX.3.2 Transmission electron microscope examination	226
Discussion	232
Summary and Conclusion	284
References	299
Arabic Summary	

List of Tables

No	Title	Page
Ι	Amount of acid (0.1 M cirtic acid and base	66
	(0.2MNa ₂ HPO ₄ .12H ₂ O) added as a buffer and completed to 100	
	ml with distilled water to give the corresponding pH value	
1	Fungi recovered in the present investigation	88
2	List of selected isolated fungal species and their sources.	89
3	Biological parameters of cotton aphids (immature –mature) sub- laboratory conditions	92
4	Toxicity data of 12 selected isolated fungi against cotton aphids	95
	(A. gossypii) at 10^8 spores/ml conidial suspension	
5	Latent effect of selected isolated fungi on biological aspects of	99
	adult stage of cotton aphids sub laboratory conditions using 5ml	
	of 10 ⁸ spore/ml conidial suspension	
6	Latent effect of selected isolated fungi on biological aspects of	101
	adult stage of cotton aphids sub laboratory condition using 5ml	
	of 10 ⁴ spore/ml conidial suspension	
7	Latent effect of two bio insecticides (Bioranza and Biovar) and	103
	one chemical insecticide (Acetambride) on biological aspects of	
	adult stage of cotton aphids under laboratory condition using	
	5ml of 2.0, 1.0 and 2.5 g/L for, Bioranza Biovar and	
	Acetambride., respectively	
8	Latent effect of two bio insecticides (Biornza and Biovar) and	104
	one chemical insecticide(Acetambride) on biological aspects of	
	adult stage of cotton aphids under laboratory condition using	
	5ml of 1.0 0.50,1.25g/L for, Bioranza, Biovar, Acetambride	
0		107
9	Effect of Acetambride at 0.313g/L concentration on viability of	10/
10	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	100
10	Effect of 10° spore/ mi concentration of each of most active six	108
11	Tungi on viability of could applies. Effect of 10^4 arous (m) concentration of most estive six function	100
11	visbility of ootton on hids	109
10	Viability of couol applies. Effect of mixture of 10^8 mere/ml concentration of most estimate	110
12	Effect of mixture of 10 spore/mi concentration of most active	110
	SIX = 0.515 g/L concentration of chemical insecticide	
12	(Actiantional) on viability of could applied. Effect of mixture of 10^4 space/ml concentration of most estimated	111
13	Effect of mixture of 10 spore/mi concentration of most active six fungi spore suspension ± 0.212 g/L concentration of	111
	six rungi spore suspension τ 0.515 g/L concentration of chemical insecticide (acetambride) on visibility of cotton only ide	
	enemiear insecticide (acctanionae) on viaonity of cotton apilius	

List of Tables (Cont.)

No	Title	Page
14	Determination of Co-Toxicity factor of mixture of 0.313g/L	112
	Acetambride and conidial suspension of most active six fungal	
	species at both 10^8 and 10^4 spores/ml concentrations against	
	adult stage of A. gossypii after 72hrs.	
15	Effect of Acetambride; Acetambride+ T. hamatum conidial	114
	suspension; T. hamatum conidial suspension; Bioranza and	
	Biovar on adult A. gossypii total soluble protein	
16	Effect of Acetambride; Acetambride+ T. hamatum conidial	116
	suspension; T. hamatum conidial suspension; Bioranza and	
	Biovar on adult <i>A. gossypii</i> GPT	
17	Effect of Acetambride; Acetambride+ T. hamatum conidial	118
	suspension; T. hamatum conidial suspension; Bioranza and	
	Biovar on adult <i>A. gossypii</i> GOT	
18	Effect of Acetambride; Acetambride+ T. hamatum conidial	120
	suspension; T. hamatum conidial suspension; Bioranza and	
	Biovar on adult A. gossypii total amylase enzyme	
19	Effect of acetambride; acetambride+ T. hamatum conidial	122
	suspension; T. hamatum conidial suspension; bioranza and	
	biovar on adult A. gossypii trehalase enzyme	
20	Effect of Acetambride; Acetambride+ T. hamatum conidial	124
	suspension; T. hamatum conidial suspension; Bioranza and	
	Biovar on adult A. gossypii invertase enzyme	107
21	Effect of incubation period on biomass production and lipase,	127
	protease and chitinase activity of <i>T. hamatum</i>	100
22	Effect of initial pH value on biomass production and lipase,	130
	protease and chitinase activity of <i>T. hamatum</i>	100
23	Effect of temperature on biomass production and lipase, protease	133
- 1	and chitinase activity of <i>T. hamatum</i>	126
24	Effect of different volumes of fermentation medium on biomass	136
	production and lipase, protease and chitinase activity of <i>I</i> .	
25		1.40
25	Effect of different carbon sources on biomass production and linear activity of T homotom	140
26	Ilpase, activity of 1. namatum	140
20	Effect of different concentration of only of on the lipase activity and biomass production of T have store	142
27	Effect of different earbon sources on hismoss production and	111
27	Effect of different carbon sources on biomass production and protocold particular T has a turn	144
	protease activity of 1. numatum	

List of Tables (Cont.)

No	Title	Page
28	Effect of different concentration of glucose on biomass and	146
	protease activity of T. hamatum	
29	Effect of different carbon sources on biomass production and	148
	chitinase activity of <i>T. hamatum</i>	
30	Effect of different concentrations % of colloidal chitin on	150
	biomass production and chitinase activity of T. hamatum	
31	Effect of different nitrogen source on biomass production and	153
	lipase, protease and chitinase activity of T. hamatum	
32	Effect of different concentration of peptone on biomass	157
	production and lipase activity of <i>T. hamatum</i>	
33	Effect of different concentrations of casein on biomass	159
	production and protease activity of T. hamatum	
34	Effect of different concentrations of yeast extract on chitinase	161
	activity and biomass production of T. hamatum	
35	Effect of different concentrations of KH ₂ PO ₄ on biomass	163
	production, lipase, protease and chitinase activity of T. hamatum	
36	Effect of KCL concentrations on biomass production and lipase,	166
	protease and chitinase activity of T. hamatum	
37	Effect of MgSO ₄ .7H ₂ O concentrations on biomass production	169
	and lipase, protease and chitinase activity of T. hamatum	
38	Effect of different trace elements on biomass production and	172
	lipase, protease and chitinase activity of T. hamatum	
39	Fractional precipitation of Trichoderma hamatum lipase by	177
	ammonium sulphate	
40	Fractional precipitation of Trichoderma hamatum protease by	178
	ammonium sulphate	
41	Fractional precipitation of Trichoderma hamatum chitinase by	179
	ammonium sulphate	
42	Effect of reaction temperature on crude lipase, protease and	181
	chitinase activity of <i>T. hamatum</i>	
43	Thermal stability of crude ammonium precipitated lipase,	184
	chitinase, and protease activity of T. hamatum	
44	Thermal inactivation parameters of T. hamatum on of crude	186
	protease, lipase and chitinase activities	
45	Effect of reaction pH on lipase, protease and chitinase activity	189
	(crude ammonium precipitated) of <i>T. hamatum</i>	
46	pH stability of crude ammonium precipitated lipase, protease	192
	and chitinase activity of <i>T. hamatum</i>	

List of Tables (Cont.)

No	Title	Page
47	Effect of reaction time on crude ammonium precipitated lipase,	195
	protease and chitinase of T. hamatum	1
48	Effect of enzyme concentration on crude ammonium precipitated	199
	lipase, protease and chitinase activity of <i>T. hamatum</i>	1
49	Effect of substrate concentration on crude precipitated	202
	ammonium sulphate lipase, protease and chitinase activity of T.	1
	hamatum	
50	Effect of different elements on crude precipitated ammonium	205
	sulphate lipase, protease and chitinase activity of T. hammatum	
51	A summary of the different purification steps of the proteases	211
	produced in the culture filtrate of Trichoderma hamatum	
52	Biological control of A. gossypii by conidial suspension and two	217
	pure proteases fractions (I and II) of T. hamatum compared by	1
	two commercial bioinsecticides (Biovar and Bioranza) at	1
	different concentrations	
53	Effect of Trichoderma hamatum conidial suspension on	222
	biological aspects of adult stages of Aphiss gosypii during life	1
	span	
54	Effect of Trichoderma hamatum protease I preparation on	223
	biological aspects of adult stages of Aphiss gosypii sublaboratory	1
	condition during life spane	
55	Effect of Trichoderma hamatum protease Π preparation on	224
	biological aspects of adult stages of Aphiss gosypii sublaboratory	I
	condition during life spane	1

No	Title	Ροσο
T	Standard aurue of fatty acid titrated by 0.1 M NoOH	1 age
I II	Standard curve of N-Acetyle glucose amine	69
II	Standard curve of Tyrosine	71
	Standard curve of Povine	71
1 V	Dialogical normators of action onhids (immeture meture) sub	12
1	laboratory conditions	93
2	Toxicity data of 12 selected isolated fungi against cotton aphids (A.	96
	gossypii) at 10 ⁸ spores/ml conidial suspension	
3	Latent effect of selected isolated fungi on biological aspects of adult	100
	stage of cotton aphids sub laboratory conditions using 5ml of 10^8	
	spore/ml conidial suspension	
4	Latent effect of selected isolated fungi on biological aspects of adult	102
	stage of cotton aphids sub laboratory condition using 5ml of 10^4	
	spore/ml conidial suspension	
5	Latent effect of two bio insecticides (Bioranza andBiovar) and one	103
	chemical insecticide(Acetambride) on biological aspects of adult	
	stage of cotton aphids under laboratory condition using 5ml of 2.0,	
	1.0 and 2.5 g/L for, Bioranza Biovar and Acetambride respectively	
6	Latent effect of two bio insecticides (Bioranza andBiovar) and one	104
	chemical insecticide(Acetambride) on biological aspects of adult	
	stage of cotton aphids under laboratory condition using 5ml of	
	1.0,0.50 and 1.25, g/L for, Bioranza Biovar, Acetambride respectively	
7	Effect of Acetambride at 0.313g/L concentration on viability of	107
	cotton aphids	
8	Effect of 10 ⁴ spore/ml concentration of most active six affected	108
	isolated fungal spore suspension on viability of cotton aphids.	
9	Effect of mixture of 10 ⁸ spore/ml concentration of most five affected	109
	isolated fungi spore suspension + 0.313 g/L concentration of	
	chemical insecticide (acetambride) on viability of cotton aphids	
10	Effect of mixture of 10 ⁸ spore/ml concentration of most active	110
	fungi spore suspension + 0.313 g/L concentration of chemical	
	insecticide (acetambride) on viability of cotton aphids	
11	Effect of mixture of 10 ⁴ spore/ml concentration of most active	111
	six fungi spore suspension + 0.313 g/L concentration of	
	chemical insecticide (acetambride) on viability of cotton aphids	
12	Effect of Acetambride; Acetambride+ T. hamatum conidial	114
	suspension: T. hamatum conidial suspension: Bioranza and Biovar on	
	adult A. gossypii total soluble protein	

List of Figures

No	Title	Page
13	Effect of Acetambride; Acetambride+ T. hamatum conidial	116
	suspension; T. hamatum conidial suspension; Bioranza and Biovar on	
	adult <i>A. gossypii</i> GPT	
14	Effect of Acetambride; Acetambride+ T. hamatum conidial	118
	suspension; T. hamatum conidial suspension; Bioranza and Biovar on	
	adult <i>A. gossypii</i> GOT	
15	Effect of Acetambride; Acetambride+ T. hamatum conidial	120
	suspension; T. hamatum conidial suspension; Bioranza and Biovar on	
	adult A. gossypii amylase enzyme	
16	Effect of Acetambride; Acetambride+ T. hamatum conidial	122
	suspension; T. hamatum conidial suspension; Bioranza and Biovar on	
	adult A. gossypii trehalase enzyme	
17	Effect of Acetambride; Acetambride+ T. hamatum conidial	124
	suspension; T. hamatum conidial suspension; Bioranza and Biovar on	
	adult A. gossypii invertase enzyme	
18a	Effect of incubation period on biomass production and lipase activity	127
	of T. hamatum	
18b	Effect of incubation period on biomass production and protease	128
	activity of <i>T. hamatum</i>	
18c	Effect of incubation period on biomass production and chitinase	128
	activity of <i>T. hamatum</i>	
19a	Effect of initial pH value on biomass production and lipase activity of	130
	T. hamatum	
19b	Effect of initial pH value on biomass production and protease activity	131
	of T. hamatum	
19c	Effect of initial pH value on biomass production and chitinase	131
	activity of <i>T. hamatum</i>	
20a	Effect of temperature on biomass production and lipase of T .	133
	hamatum	
20b	Effect of temperature on biomass production and protease activity of	134
	T. hamatum	
20c	Effect of temperature on biomass production and chitinase activity of	134
	T. hamatum	
21a	Effect of different volumes of fermentation medium on biomass	136
	production and lipase activity of <i>T. hamatum</i>	
21b	Effect of different volumes of fermentation medium on biomass	137
	production and protease activity of <i>T. hamatum</i>	
21c	Effect of different volumes of fermentation medium on biomass	137
	production and chitinase activity of <i>T. hamatum</i>	
22	Effect of different carbon sources on biomass production and lipase,	140
	activity of <i>T. hamatum</i>	

No	Title	Page
23	Effect of different concentration of olive oil on the linase activity and	142
25	biomass production of <i>T</i> hamatum	174
24	Effect of different carbon sources on biomass production and	144
24	protease activity of T hamatum	144
25	Effect of different concentration of glucose on biomass production	146
23	and proteose activity of T hamatum	140
26	Effect of different of earbon sources on biomass production and	1/18
20	which are a solution of T harmatum	140
27	Effect of different concentration $9/$ of colloided chitin on biomage	150
21	Effect of different concentration 76 of conordar chilli on biomass	150
200	Effect of different nitre con source on biomass are duction and linese	154
28a	Effect of different introgen source on biomass production and ipase, potimize of T , have store	134
201	activity of 1. namatum	154
280	Effect of different nitrogen source on biomass production and	154
20	protease activity of <i>I. hamatum</i>	1.5.5
28c	Effect of different nitrogen source on biomass production and	155
• •	chitinase activity of T. hamatum	
29	Effect of different concentration of peptone on biomass production	157
	and lipase activity of T. hamatum	
30	Effect of different concentrations of casein on biomass production	159
	and protease activity of <i>T. hamatum</i>	
31	Effect of different concentrations of yeast extract on chitinase activity	161
	and biomass production of <i>T. hamatum</i>	
32a	Effect of different concentration of KH ₂ PO ₄ on biomass production	163
	and lipase activity of <i>T. hamatum</i>	
32b	Effect of different concentration of KH ₂ PO ₄ on biomass production	164
	and protease activity of <i>T. hamatum</i>	
32c	Effect of different concentrations of KH ₂ PO ₄ on biomass production	164
	and chitinase activity of <i>T. hamatum</i>	
33a	Effect of KCl concentrations on biomass productions and lipase	166
	activity of <i>T. hamatum</i>	
33b	Effect of KCl concentrations on biomass productions and, protease	167
	activity of <i>T. hamatum</i>	
33c	Effect of KCl concentrations on biomass production and chitinase	167
	activity of <i>T. hamatum</i>	
34a	Effect of MgSO ₄ .7H ₂ O concentrations on biomass production and	169
	lipase activity of <i>T. hamatum</i>	
34b	Effect of MgSO ₄ .7H ₂ O concenterations on biomass production and	170
	protease activity of T. hamatum	
34c	Effect of MgSO ₄ .7H ₂ O concenterations on biomass production and	170
	chitinase activity of T. hamatum	

No	Title	Page
35a	Effect of different trace elements on biomass production and lipase	173
	activity of <i>T. hamatum</i>	
35b	Effect of different trace elements on biomass production and	173
	protease of <i>T. hamatum</i>	
35c	Effect of different concentrations of trace elements on biomass	174
	production and chitinase of <i>T. hamatum</i>	
36	Fractional precipitation of Trichoderma hamatum lipase by	177
	ammonium sulphate	
37	Fractional precipitation of Trichoderma hamatum protease by	178
	ammonium sulphate	
38	Fractional precipitation of Trichoderma hamatum chitinase by	179
	ammonium sulphate	
39a	Effect of reaction temperature on crude lipase activity of <i>T. hamatum</i>	181
39b	Effect of reaction temperature on crude protease activity of T.	182
	hamatum	
39c	Effect of reaction temperature on crude chitinase activity of T.	182
	hamatum	
40a	Thermal stability of crude ammonium precipitated lipase activity of	185
	T. hamatum	
40b	Thermal stability of crude ammonium precipitated protease activity	185
	of T. hamatum	
40c	Thermal stability of crude ammonium precipitated chitinase activity	186
	of T. hamatum	
41	Thermal stability profile of T, hamatum for three enzymes, after	187
	incubation of enzymes at different temperature (30-60°C) and various	
	periods (30-120 min), the residual activity was determined by the	
	standard assay method (a) protease enzyme (b) lipase; and (c)	
	chitinase (d) Thermal inactivation profile for protease and lipase, Tm	
	is temperature degree at which the enzyme retains half of its initial	
	activity at 60 min	
42a	Effect of reaction pH on ammonium precipitated crude lipase of T.	189
	hamatum	
42b	Effect of reaction pH on ammonium precipitated crude protease of <i>T</i> .	190
	hamatum	
42c	Effect of reaction pH on ammonium precipitated crude chitinase of <i>T</i> .	190
	hamatum	
43a	pH stability of crude ammonium precipitated lipase activity of T.	192
101	hamatum	100
43b	pH stability of crude ammonium precipitated protease, activity of T.	193
	hamatum	

No	Title	Page
43c	pH stability of crude ammonium precipitated chitinase activity of T.	193
	hamatum	
44a	Effect of reaction time on crude ammonium precipitated lipase of T.	195
	hamatum	
44b	Effect of reaction time on crude ammonium precipitated protease of	196
	T. hamatum	
44c	Effect of reaction time on crude ammonium precipitated chitinase of	196
	T. hamatum	
45a	Effect of enzyme concentration on crude ammonium precipitated	199
	lipase activity of <i>T. hamatum</i>	
45b	Effect of enzyme concentration on crude ammonium precipitated	200
	protease, activity of T. hamatum	
45c	Effect of enzyme concentration on crude ammonium precipitated	200
	chitinase activity of T. hamatum	
46a	Effect of substrate concentration on crude precipitated ammonium	202
	sulphate lipase activity of <i>T. hamatum</i>	
46b	Effect of substrate concentration on crude precipitated ammonium	203
	sulphate protease activity of T. hamatum	
46c	Effect of substrate concentration on crude precipitated ammonium	203
	sulphate chitinase activity of <i>T. hamatum</i>	
47a	Effect of different elements on crude precipitated ammonium	205
	sulphate lipase activity of <i>T. hamatum</i>	
47b	Effect of different elements on crude precipitated ammonium	206
	sulphate protease activity of <i>T. hamatum</i>	
47c	Effect of different elements on crude precipitated ammonium	206
	sulphate chitinase activity of <i>T. hamatum</i>	
48	Fractional purification pattern of the dialyzed protease by applying	210
	Sephadex G-100 column chromatography	
49	Fractional purification pattern of the dialyzed protease by applying	210
	Sephadex G-50 column chromatography	
50	SDS-PAGE analysis protease from T. hamatum, revealing some	214
	purification steps: M. standard bio basic protein markers (Lane 1),	
	crude enzyme preparation (Lane 2), partially purified enzyme (after	
	dialysis) (Lane 3), purified protease one sharp peak fraction obtained	
	by first gel filtration and (Lane 4) purified protease one sharp peak	
<u></u>	Iraction obtained by second gel filtration	010
51	Concentration mortality probit lines of Biovar (1), Bioranza (2), T .	218
	namaium conidiai suspension (5), protease I (4) and protease II (5) on adult A gossumii after 5 days page treatment to determine I C and	
	adult A. gossypu after 5 days post-treatment to determine LC_{50} and LC_{50}	
1		

No	Title	Page
52	Effect of Trichoderma hamatum conidial suspension on biological	222
	aspects of adult stages of Aphiss gosypii during life span	
53	Effect of Trichoderma hamatum protease I preparation on biological	223
	aspects of adult stages of Aphiss gosypii sublaboratory condition	
	during life spane	
54	Effect of Trichoderma hamatum protease II preparation on	224
	biological aspects of adult stages of Aphiss gosypii sublaboratory	
	condition during life spane	

No	Title	Page
1	Light microscopic in images of Trichoderma hamatum	90
2	Image of plant effected by cotton aphids	90
3	Light microscope micrographs of semi-thin sections of	228
	untreated adult A. gossypii (A) and treated one with T.	
	<i>hamatum</i> (10^8 spores/ml) spore suspension (B), after 5 days	
	post-treatment.	
4	Transmission electron microscope micrographs of ultra-thin	229
	sections of untreated adult A. gossypii, after 5 days of rearing	
5	Transmission electron microscope micrographs of ultra-thin	230
	sections of treated adult A. gossypii with T. hamatum (10^8)	
	spores/ml) spore suspension, after 2 days post-treatment	
6	Transmission electron microscope micrographs of ultra-thin	231
	sections of treated adult A. gossypii with T. hamatum (10^8)	
	spores/ml) spore suspension, after 5 days post-treatment	

List of Plates

Summary and Conclusion

As recent approaches to select new agents of potential entomopathogens for aphid biocontrol; these trials were carried out to determine the efficacy of some natural isolates of fungi associated with aphids or found on infested plants of aphids host or plant root zone soil ; against cotton aphids, *Aphis gossypii* (Glov.),in comparable with some bio and conventional aphicides. The biological control must be widespread but chemical one must be restricted in narrow limits. Therefore, there is considerable interest in the explanation of microorganisms including entomopathogenic fungi for biocontrol of different pests.

Microbial degradation of insect cuticle components such as lipid, protein and chitin components and production of cuticle degrading enzymes particularly lipases, protease and chitinases have captured the world wide attention of biocontrol studies. But unfortunately the degradatives ability of insect cuticle fungal species have little attention and are not being completely investigate in Egypt. Therefore, the present investigation is directed to study the possible use of lipase, protease and chitinase enzyme by some local fungi. Selecting the most potent fungal species and optimization of the culture conditions to reach optimum growth as well as lipase protease and chitinase production and its potentiality to degrade cuticle. Some physicochemical properties of lipase protease and chitinase were also revealed. Moreover, the present work extends to investigate the effect of coindial suspensions and metabolites of selected organism on biological aspects of some developmental stages of cotton aphids to biocontrol this insect. The obtained results can be summarized in the following:

- 1. Fungi recovered in the present investigation belonging to 3 classes namely; Zygomycetes; Ascomycetes and Deutromycetes represented as 52 isolates . Ascomycetes represented by 4 genera and the most frequent genera were *Aspergillus* represented by 22 isolates and *Penicillium* represented by 8 isolates. Deutromycetes was the most representable class according to number of genera, it comprised 8 genera *viz.*, *Alternaria*; *Cephalosporium*; *Cladosporium*; *Fusarium*; *Humicola*; *Hypomyces*; *Stachypotrys* and *Trichoderma*. Zygomycetes represented by only one fungal genus, *Mucor* in 2 isolates.
- 2. Twelve fungal isolates were chosen for the further biocontrol test in this investigation. These isolates were isolated from different sources where, *Acremonium* sp.; *Cladosporium* sp.; *Humicola* sp2 and *Stachypotrys* sp1 were isolated from sandy; clay and salty soil samples, respectively. While the other isolates were isolated from insects where, *Cephalosporium* sp1; *Cephalosporium* sp2and *Trichoderma* sp1 were isolated from bees and *Humicola* sp1; *Stachypotrys* sp2 and *Trichoderma* sp2 were isolated from the cotton aphids while *Chaetomium* sp. was isolated from the house fly.
- 3. The biological parameters of *A. gosypii* on the mean duration of immature stages (nymphal instars periods). Data as follow in mean of first, second, third and fourth nymphal instars were 1.63 ± 0.08 , 2.083 ± 0.094 , 1.83 ± 0.08 and 1.7 ± 0.06 days respectively. The total mean duration of nymphal instars were 7.243 ± 0.09 days.
- 4. The longivety of apterous (adults) was 11.25 ± 0.86. The longevity of apterous divided in to three periods, pre-parturation, parturition and post parturition periods were 1.01 ± 0.05, 8.45 ± 0.81 and 0.785 ± 0.09 respectively. The mean total longevity of *A. gossypii* (life span)

was 17.49 ± 0.86 days. The data also show the mean number off spring per female were 29.47 ± 1.94 progenies.

- 5. This work was extend to evaluated the efficacy of 12 selected isolated fungi against cotton aphid A. gossvpii. Data showed that more than half of tested fungal species revealed obvious aphicidal effect expressed as mortality percentages at experimental concentration in comparison with control. Maximum inhibition of aphid growth was with of observed used spore suspension Trichoderma $sp_2(Trichoderma hamatum)$ recording mortality percentage (65.15) %), followed by that of Acremonium sp_1 , Trichoderma sp_1 , *Hypomycetes* sp, *Cephalosporium* sp₂. While the minimum inhibition was observed with spore suspension of *Stachypotrys* sp_1 and sp_2 , Humicola sp_1 and sp_2 recording mortality percentage 28.92%, 27.91%, 24.41%, and 22.12%, respectively.
- 6. The effect of latent effect of selected isolated fungi using 10^4 and 10^8 spore/ml conidial suspension compared by bio and chemical insecticides (at recommended concentrations) on biological aspects of adult stage of cotton aphids under laboratory conditions was investigated. All tested fungi using 10^4 and 10^8 spore/ml conidial suspension recorded shorter longevity period (summation of three periods, preparturation, parturation and postparturation) and less mean number of nymphal female of the tested cotton adult aphids as compared to control.
- 7. *Trichoderma* sp₂ (*T. hamatum*) recorded the shorter longevity period $(5\pm2.79 \text{ and } 8.31\pm0.09)$ and less mean number of nymphal female $(6.33\pm0.03 \text{ and } 16.00\pm1.00)$ between all the tested fungi, at both10⁸ and 10⁴ spore/ml conidial suspension, respectively. While, *Humicola* sp₁ and sp₂ and *Stachypotrys* sp₁ and sp₂ recorded the highest mean of longevity period and nymphal female number of the tested cotton

adult aphids as compared to other tested fungi at both two tested conidial suspension concentrations.

- 8. The biocontrol test extended to investigate the latent effect of two bionsecticides (Biovar, Bioranza) and one chemical insecticide (acetambride) by using different concentrations of them at recommended concentrations. At the two tested concentrations of the three tested insecticides, the longevity period of adult aphids was shorter than that of control. And by detecting the number of nymphal female we noted that all of them are lesser than in control. It was also, found that, the used bio and chemical insecticides were more effective than the tested fungi except *Trichoderma* sp₂ (*T. hamatum*) which also, still less effective than the chemical insecticide acetambride.
- 9. Since the use of chemical insecticides for controlling this insect pest is undesirable and integrated control programs necessitate the integration of several systems, it is important to investigate a new mean of pest control. So, we use a mixture of the conidial suspension of the more active isolated fungi at two concentrations 10^8 and 10^4 spores/ml and the smallest concentration (0.313g/L distilled water) of chemical insecticides, Acetambride, at which it gave mortality as control agent against A. gossypii. At first, we determined the mortality percentages in the cotton aphids post-treatment separately with 0.313g/L concentration of Acetambride; 10⁸ and 10⁴ spores/ml conidial suspension of the most active six fungal species from the previous experiment namely; *Trichoderma* sp₁ *Hypomyces* sp; Trichoderma Cladosporium spand sp₂; Chaetomium sp; Cephalosporium sp_2 after 24; 48 and 72hrs. It was observed that, Acetambride gave the highest mortality even at its smallest concentration as compared to control and other tested fungal species after 72hrs post-treatment. It was also, observed that, Trichoderma

sp₂ (*T. hamatum*) gave the highest mortality after 72hrs posttreatment. Then, we determined the mortality percentages in the cotton aphids after treatment with a mixture of 0.313g/Lconcentration of Acetambride and the conidial suspension of the most active six fungal species at two concentrations 10^8 and 10^4 spores/ml, after 24; 48 and 72hrs. It was found that, the mixture of Acetambride and conidial suspension of *Trichoderma* sp₂ (*T. hamatum*) recorded the highest mortality (52.92±2.02 and 41.43±1.03) at both tested concentrations (10^8 and 10^4 spores/ml conidial suspension), respectively after 72hrs post-treatment. Finally, we determined the Co-Toxicity factors which showed that, the combination of tested fungi at 10^8 and 10^4 spore/ml conidial suspension with 0.313g/L concentration of Acetambride revealed antagonism action not additative action.

- From all previous results, the fungus, *Trichoderma* sp₂ were identified as *Trichoderma hamatum* and used for future investigations in this study.
- 11. The biochemical responses of adult A. gossypii expressed as total transaminase soluble protein; enzymes (glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT)) and carbohydrate hydrolyzing enzymes (amylase, trehalase and invertase) were assayed by using the same treatments used for biological studies with LC50 of Acetambride, recommended concentration of Biovarand Bioranzaand T. hamatum conidial suspension alone or mixed with the chemical insecticide Acetambride (at lower concentration give mortality ratio, the biochemical responses to these treatments were applied on adult. These attributes measured at the intervals of 48, 72 and 96 hours after treatments.

- It was found that, all tested treatments showed a disturbance in the total soluble protein of the adult cotton aphids. All treatments caused a decrease in total soluble protein of the adult cotton aphids after 96hrs post-treatment as compared to control (untreated aphids). It was also observed that, each of acetambride+ *T*. *hamatum* conidial suspension (10⁸ spore/ml); *T. hamatum* conidial suspension (10⁸ spore/ml); *T. hamatum* conidial suspension (10⁸ spore/ml) and biovar caused an increase in total soluble protein of the adult cotton aphids after both 48 and 72hrs post-treatment, while, acetambride and bioranza caused a decrease in its amount after the same time intervals as compared to control.
- All treatments caused a decrease in GPT relative activity of adult
 A. gossypii after 72hrs post- treatment, as compared to control.
 Then the GPT relative activities started to increase again after
 96hrs post-treatment in case of acetambride+ *T. hamatum* conidial
 suspension; *T. hamatum* conidial suspension; bioranza and biovar
 in increase percents 78.25; 108.04; 97.25 and 101.01%,
 respectively as compared to control except in case of acetambride
 the GPT disappeared after this time (100% decrease percent).
- All treatments caused an increase in the relative activity of adult *A. gossypii* GOT after 48hrs post-treatment as compared to control but after this time it was found that, there was a disturbance in GOT relative activities with these treatments where, acetambride caused a decrease in GOT relative activity as 55.93% decreasing percent after 72hrs post-treatment, while GOT disappeared after 96hrs post-treatment as compared to control. It was also, observed that, each of acetambride+ *T. hamatum* conidial suspension; *T. hamatum* conidial suspension and bioranza caused a decrease in GOT amounts in 4.24; 5.46 and 16.25% decreasing percentages after 96hrs post-treatment as compared to control. On the other hand

biovar still causing an increase in GOT amount as 18.63% increasing percent after 96hrs post-treatment as compared to control.

- All treatments caused an increase in adult cotton aphid amylase relative activity after 48hrs post-treatment then caused a decrease in its relative activity after 72hrs post-treatment, as compared to control. It was also, observed that the adult cotton aphid amylase relative activity started to increase again after 96hrs post-treatment in 298.17; 327.96; 317.17 and 271.13% an increasing percentages in case of acetambride; acetambride+ *T. hamatum* conidial suspension; *T. hamatum* conidial suspension and bioranza, respectively as compared to control (untreated aphids) while the amylase enzyme disappeared in case of biovar treatment after 96hrs post-treatment.
- In general all treatments caused a decrease in *A. gossypii* trehalase enzyme relative activity after 48 and 72hrs post-treatment as compared to control. It was also, observed that, the trehalase enzyme disappeared in case of acetambride; acetambride+ *T. hamatum* conidial suspension and bioranza treatments while in case of *T. hamatum* conidial suspension and biovar treatments, it started to increase in 39.24 and 51.93% increasing percentages, respectively after 96hrs post-treatment as compared to control.
- Acetambride; acetambride+ *T. hamatum* conidial suspension; *T. hamatum* conidial suspension; bioranza and biovar treatments of adult *A. gossypii* caused a decrease in invertase enzyme relative activity in a decreasing percentages 63.74; 26.58; 5.55; 58.41 and 76.56%, respectively after 72hrs post-treatment as compared to control, but the adult aphid invertase relative activity started to increase in increasing in case of *T. hamatum* conidial suspension;

bioranza and biovar treatments but, disappeared in case of acetambride and acetambride+ *T. hamatum* conidial suspension treatments after 96hrs post-treatment

- **12.** The effect of some environmental and nutritional factors on mycelial growth and lipase, protease and chitinase activity of *T. hamatum* were investigated.
 - 7 days, 6 days and 5 days were the optimum incubation periods, for lipase, protease and chitinase, respectively.
 - Initial pH5 was found to be optimal for lipase and chitinase activity while pH8 was found to be optimal for protease activity and growth of *T. hamatum*.
 - the incubation temperature 30°C was the optimum for lipase and protease while 25°C was the optimum for chitinase.
 - The optimum output of lipase, protease, chitinase and biomass of tested organism were recorded on using 50 ml of fermentation medium dispensed in 250 ml fermentation flask (1/5 v/v).
 - The emulsified olive oil (the carbon source of the basal medium) was the most favorable carbon source for lipase activity of *T*. *hamatum*. While glucose was the best carbon source for biomass production. And the best concentration of olive oil for *T. hamatum* was 6.0%.
 - Glucose was the best carbon source for biomass yield and protease activity of tested fungus and the best concentration of glucose for *T. hamatum* was 2.0%.
 - Colloidal chitin (the carbon source of the basal media) was the best carbon source for biomass yield and chitinase activity of tested fungus and the best concentration of colloidal chitin for *T*. *hamatum* was 1%.

- Peptone, casein and yeast extract were the best nitrogen sources in the case of lipase, protease and chitinase, respectively. And 0.5 % peptone; 1.50 % casein and 0.5 % of yeast extract were the best concentrations.
- [The concentrations 1.5, 2 and 1 g/ L of KH_2PO_4 were the best phosphorous source in the fermentation medium, for lipase, protease and chitinase, respectively. The optimum KCl (0.025, 0.075 and 0.05) for lipase protease and chitinase, respectively. And 0.075%, 0.075% and 0.05% (w/v) MgSO₄.7H₂O for lipase, protease and chitinase medium, respectively.
- The addition of 10 mg/ L of FeSO₄.7H_{2O} and ZnSO₄.7H₂O,Cocl₂ to the experimental medium had stimulatory effect in lipase, protease, chitinase, and biomass production by *T. hamatum*. However, the supplementation of CuSo₄.5H₂O and Mncl₂ and to the tested culture medium led to decrease in biomass, lipase, protease and chitinase production of *T. hamatum* led to decrease in biomass, lipase, protease and chitinase activities of the experimental organism. On the other hand, the addition of NaCl and CaCl₂ to the fermentation medium give enzymes as well as biomass yields relatively as the same in the case of control (basal medium without micro elements).
- **13.** When the protein fractions of *T. hamatum* salted out at different ammonium sulphate ratio of reactions, the highest fraction activity for each enzyme was salted out at 60% ammonium sulfate (for lipase) and 70% ammonium sulfate (for both protease and chitinase) and showed highest recovered activity as well as relatively high protein content, also ammonium sulphate saturation showed that the highest specific activity of *T. hamatum* lipase, protease, chitinase reaching

(1.48 U/mg/m, 7.43 U/mg /m, 1.34, U/ mg protein., respectively were higher than that of the crude enzyme preparation.

- **14.** Some physical chemical properties as well as enzymatic reaction conditions of crude lipase, protease and chitinase of *T. hamatum* were studied.
 - The optimum temperature of the enzymatic reaction of *T. hamatum* lipase, protease and chitinase will be assayed at 40°C, 40°C and 50°C, respectively. However, the lipase, protease and chitinase retained about 77.90, 59.13 and 21.47% reduction in its activity respectively after heating at 60°C for 30 minutes and almost lost their original activity as heated at the same temperature for 120 min.
 - pH6, pH8 and pH5 can be considered as the optimum pH values for lipase, protease and chitinase activity respectively. However, the data appeared that, there were more than 92.34, 91.57, 76.57 and 51.40, 12.43, 80.92% loss in their activities in 2hrs at pH3.0 and pH 9.0 for lipase, protease and chitinase respectively.
 - The optimum reaction time for crude lipase, protease and chitinase is 60, 90 and 90 minutes, respectively.
 - 1ml (0.19 mg protein / reaction mixture) and 1.5 ml (0.18 mg / protein / reaction mixture) and 1.5 ml (0.14 mg protein / reaction mixture) were the optimum for lipase, protease and chitinase, respectively.
 - The protease, lipase and chitinase enzymes had high affinity and catalytic activity for casein, olive oil and chitin respectively (km 0.27, 0.14 and 1.43 mM, Vmax 1.26, 0.137 and 0.09U/mg/min, respectively.

- Lipase was activated by addition of Znso₄.7H20, CoCl₂, MnCl₂, MgSO₄.7H₂O. While protease and chitinase activities were increased by addition of first for protease MgSO₄.7H₂O, CaCl₂, KCl, Cuso₄.5H₂O and second for chitinase MgSO₄.7H₂O, ZnSO₄.7H₂O, FeSo₄.7H₂O were increase the activity of chitinase. However, some other tested substances such as FeSo₄.7H₂O, Nacl, Cacl₂, Kcl, CusSo₄.5H₂O for lipase and ZnSO₄.7H₂O, CoCl₂, Nacl, MnCl₂,EDTA, Feso₄.7H₂O for protease and cocl₂, CaCl₂, Nacl, Kcl, Mncl₂ for chitinase causing inhibitory effect on lipase, protease and chitinase enzymes activities that showing decreasing in its ratio of the original activity (control) respectively. On the other hand, the crude, lipase, protease and chitinase were completely inactivated by Hg²⁺ after incubation period for each enzymes. The opposite were also true for Na²⁺, K²⁺ and Co²⁺ ions which n't significantly for tested *T. hamatum* enzymes.
- **15.** Protease enzyme produced by *T. hamatum* was subjected to purificational steps by applying fractional precipitation by ammonium sulphate saturation level, dialyzation against tap water and sucrose as well as applying on column chromatography technique containing firstly Sephadex G_{-100} and socondly G_{50} .
- 16. Enzyme activity, protein content and specific enzyme activity were 42.07 (U/ml), 0.42 (mg/ml) and 3.34 (U/mg protein/m), respectively. Ammonium sulphate was added to CFF in order to achieve 70 % saturation levels. the purity of protease enzyme increased by 2.22 fold.
- 17. The most active protease enzyme fractions previously obtained at 70% ammonium sulphate saturation was dialyzed against tap water followed by sucrose until a constant volume achieved.

- 18. Two active peak was obtained at fraction No.(26, 34) showed highest specific activity(8.71,9.19) U/mg/m protein) and the purity of protease increased by 2.61 and 2.75 fold respectively.
- **19.** Second purification was achieved by using sephadex G50, a very active peak was obtained at fraction No.(28,35).
- **20.** SDS-polyacrylamide electrophoresis was applied to examine the efficiency of the purification steps, using the SDS-PAGE approach, the two sharp fraction protease (proteaseI and proteaseII) that recovered from gel filteration, were fractionated as two distinctive bands, for protease enzyme. The protein profile show that, the molecular weight of proteaseI was 31.101 kDa while the proteaseII has molecular weight 34.622 kDa.
- **21.** The biocontrol potential of *T. hamatum* conidial suspension and its proteases (I and II) against the adult cotton aphids as compared to two commercial bioinsecticides (Biovar and Bioranza) was studied. Each of biovar and bioranza were more effective against *A. gossypii*than *T. hamatum* conidial suspension and proteases (I and II) as biocontrol agents.
- **22.** The toxicity index values at LC_{50} revealed that the tested fungus conidial suspension and proteases (I and II) had less effect on *A*. *gossypii* than the two commercial bioinsecticides. The results of tolerance rate of *A. gossypii* as response to tested materials revealed that the tested aphids were more susceptible to Biovar, at LC_{50} , followed by Bioranza and $(10^2, 10^3, 10^4 \text{ and } 10^8 \text{ spores/ml})$ concentrations of conidial suspension of *T. hamatum* with 35.89 fold of most potent compound, Biovar. Also, LC_{90} and both toxicity index and tolerant rate at LC_{90} , the tested compounds recorded the same trend at the LC_{50} . So, it could be concluded that the cotton aphid was

more tolerant to natural isolate, *T. hamatum* and its proteases (I and II) than the two commercial bioinsecticides.

- **23.** The effect of highly two concentrations with highly mortality percentages of tested fungal species (*T. hamatum*) and its proteases I, and Π enzymes on longevity of adults and number of nymphs of tested insect was investigated. The mean longevity of tested aphids at 10^8 and 10^4 spore/ml, were shorter than control.
- **24.** *T. hamatum* conidialsuspensionhave significant effect on the number of off spring compared to the experimental control value. The number of nymphs were 13.87 and 19.17 lesser than control 28.67, respectively.
- **25.** The biocontrol test extended to investigate the latent effect of purified *T. hamatum* proteases (I and Π) on longevity and number of nymphs of adult tested aphids during life span using two concentrations (2.5 and 5.0 ml/Petri dish). Values of the mean longevity periods in all experimental treatments were shorter than control. Also, the results showed that, the purified proteases (I and Π) treatments have latent effect at 0.5 ml/Petri dish more than at 2.5 ml concentration compared to control on the longevity as well as the number of offsprings.
- 26. The microscopic examination (light and electron microscopy) of adult *A. gossypii* in this study revealed that the*T. hamatum* spore suspension brought about massive disintegration and deformation of the aphid's body and tissues. Also, it revealed the development and the colonization of the fungus inside the insect.
 - The light and transmission electron microscope examination of untreated and treated adult cotton aphid showing different histological changes between them. The untreated adult cotton aphid semi-thin section showed the normal structure of the aphid's body with normal intact cuticle which clearly differentiated into

epicuticle and endocuticle layers. Normal adipose tissue (fatty tissue beneath the cuticle); normal gut epithelial cells surrounding the lumen gut; normal entire salivary gland surrounded by its membrane and normal ovary tissue with embryo were also observed. The basement membrane that surrounded the all insect organs in the haemcoel of the insect also appeared normal and intact.

The treated adult aphid semi-thin section showing many abnormalities in the insect's body. There is a disorganization of the cuticle which appeared not differentiated into its epicuticle and endocuticle layers and become black-spotted due to fungal invasion as compared to the untreated one. It was found that the treatment of adult Aphiss gossypii with T. hamatum spore suspension resulted in: lyses of the ovarition follicles in the ovary; deformation of hind gut epithelial cells and the lumen area under these disintegrated epithelial cells became wider as compared to the untreated insect and deformation of the salivary gland which appeared losing its surrounding membrane. Also, several vacuoles were found inside the insect tissues and located the adipose tissue. The adipose tissue was totally occupied by the fungus hyphae and spores. It was observed that the fungus was able to penetrate the insect cuticle and passed through the subcutaneous muscle which appeared deformed and disintegrated. The adipose tissue which appeared disintegrated and more vacuolated. It was seen that the adipose tissue; lumen and other disintegrated insect structures and organelles were totally occupied by the fungus hyphal growth; yeast-like hyphal bodies and spores.