CONSTRUCTION AND ENVIRONMENTAL CONTROL OF A SMALL- SCALE FISH TANK FOR BREEDING AND PRODUCING FRESHWATER FISH

BY SAFAA ELSAYED GHARIB MOHAMED

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Agricultural Engineering)

Department of Agricultural Engineering Faculty of Agriculture Zagazig University

2016

CONTENTS

	No.
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Culture tank engineering	3
2.2. Fish tanks conditioning requirements	5
2.2.1 Temperature	5
2.2.2 Aeration.	7
2.2.3 Water quality	8
2.3 Aerators Devices	9
2.3.1 Gravity aeration	11
2.3.2 Diffuser aerators	11
2.3.3 Paddle wheel aerators	13
2.3.4 Turbine aerators	15
2.3.5 Propeller-aspirator pump aerators	16
2.3.6 Vertical pump aerators	16
2.4 Dissolved oxygen (DO) required for fish	17
2.5 Factors affecting the amount of dissolved oxygen	
in water	21
2.6 Effect of stocking density on tilapia Fish	
production	22
2.6.1. growth performance	23
2.6.2. Survival rate	28
2.6.3. feed utilization	29
2.6.4. water quality parameters	31

3. MATERIALS AND METHODS	33
3.1. Materials.	33
3.1.1. Nile Tilapia fish	33
3.1.2. Fish diet	33
3.1.3. Water quality	34
3.1.4. The constructed tanks	34
3.2. Methods.	39
3.2.1. Experimental conditions	39
3.2.2. Measurements and determinations	40
4. RESULATS AND DISCUSSION	44
 4.1. Effect of aeration regime on round and square fish tanks performance under different stocking densities	44 44 46 48 55 57 59 61
4.1.8. Relative growth rate of Nile tilapia	63
4.2. Effect of aeration regime on required power	65
4.3. Net profit of Nile tilapia for round and square tanks under different stocking densities	67

5. SUMMARY AND CONCLUSIONS	69
6. REFERENCES	74
7. APPENDIX	87
ARABIC SUMMARY	

LIST TABLES

No.	Title	Page
1	Standard specifications of the used water	34
2	Types of bacteria that are present in one gram of biological cotton at the beginning of the Experiment.	39
3	The changes occurred in body weight under aeration regime A1 (aeration by air compressor with inter-holes distance of 150 mm) in round tank	87
4	The changes occurred in body weight under aeration regime A2 (aeration by air compressor with inter-holes distance of 200 mm) in round tank	88
5	The changes occurred in body weight under aeration regime A3 (aeration by air compressor with inter-holes distance of 250 mm) in round tank	89
6	The changes occurred in body weight under aeration regime A1 (aeration by air compressor with inter-holes distance of 150 mm) in square tank	90
7	The changes occurred in body weight under aeration regime A2 (aeration by air compressor with inter-holes distance of 200 mm) in square tank	91
8	The changes occurred in body weight under aeration regime A3 (aeration by air compressor with	02
0	inter-holes distance of 250 mm) in square tank	92
9	Number of dead fish in round tank	93
10	Number of dead fish in square tank	93

No.	Title	Page
11	Effect of aeration regime on biomass of Nile tilapia in round tank	93
12	Effect of aeration regime on biomass of Nile tilapia in square tank	94
13	Effect of aeration regime on specific growth ratio with using round tank and different densities	94
14	Effect of aeration regime on specific growth ratio in square tank with using different densities	94
15	Effect of aeration regime on relative growth ratio (RGR %) in round tank with different densities	95
16	Effect of aeration regime on relative growth ratio (RGR %) in square tank with different densities	95
17	The dissolved oxygen without fish in round tank under different aeration regimes	96
18	The dissolved oxygen without fish in square tank under different aeration regimes	97
19	Effect of stocking density of Nile tilapia on the dissolved oxygen under aeration regime A2 in round tank	98
20	Effect of stocking density of Nile tilapia on the dissolved oxygen under aeration regime A3 in round tank.	99
21	Effect of stocking density of Nile tilapia on the dissolved oxygen under aeration regime A1 in round tank.	100

No.	Title	Page
22	Effect of stocking density of Nile tilapia on the dissolved oxygen under aeration regime A1 in	
	square tank	101
23	Effect of stocking density of Nile tilapia on the dissolved oxygen under aeration regime A2 in	
	square tank	102
24	Effect of stocking density of Nile tilapia on the dissolved oxygen under aeration regime A3 in	
	square tank	103
25	Net profit of Nile tilapia as affected by using different stocking densities in round tank	104
26	Net profit of Nile tilapia as affected by fish stocking densities under different aeration regime in	
	square tank	105

LIST OF FIGURES

No.	Title	Page
1	pH meter	34
2	Round tank	35
3	Square tank	35
4	Elevation view of Round tank	35
5	Elevation view of square tank	36
6	Manometer	37
7	Section elevation of Biological Filter	38
8	Dissolved oxygen meter.	41
9	Effect of aeration regime on ammonia concentration with and without biological filter in Square and round tanks under different Nile Tilapia stocking densities.	45
10	Effect of aeration regime on efficiency of biological filter in Square and round tanks under different Nile tilapia stocking densities	47
11	Effect of aeration regimes on dissolved oxygen	4.7
12	without fish for round and square tanks Effect of aeration regimes on dissolved oxygen for round and square tanks using different stocking	47
	densities in first month	49
13	Effect of aeration regimes on dissolved oxygen for round and square tanks using different stocking	
	densities in second month	51

No.	Title	Page
14	Effect of aeration regimes on dissolved oxygen for round and square tanks using different stocking densities in third month.	52
15	Effect of aeration regimes on biomass of Nile tilapia in round and square tanks using different stocking densities	54
16	Effect of aeration regime on dead fish of Nile tilapia in round and square tanks using different stocking densities.	58
17	Effect of aeration regime on body weight gain of tilapia in round and square tanks under different stocking densities	60
18	Effect of aeration regimes on specific growth ratio of tilapia in round and square tanks under different stocking densities	62
19	Effect of aeration regimes on relative growth ratio of tilapia in round and square tanks under different stocking densities.	64
20	Effect of aeration regime on required power	66
21	Net profit of Nile tilapia in round and square tanks under different stocking densities	68

ABSTRACT

Experiments were carried out through two years from 2014 to 2015 at a private farm, Sharkia Governorate, Egypt to study the effect of some different parameters on the performance of two designed aquaculture tanks (round and square) during aquaculture of Nile tilapia (*Oreochromis niloticus*).

The main objective of the present research is to construct and control environment of a small-scale fish tank for breeding and producing freshwater fish.

To achieve the main objective, the sub main objectives of this investigation are to:

- 1- Evaluate some different parameters (tank shape, fish stocking density, with and without biological filter, and aeration regime) affecting Nile tilapia production.
- 2- Evaluate the constructed fish tank from the economic point of view.

Two small-scale designed fish tanks (round and square) were constructed for breeding and producing freshwater fish. To control environment, experiments were carried out to study the effect of some different parameters on the performance of the two designed tanks during aquaculture of Nile tilapia (*Oreochromis niloticus*). Performance was experimentally investigated as a function of change in tank shape, fish stocking density, with and without biological filter, and aeration regime in terms of ammonia concentration, dissolved oxygen, biomass, dead fish, body weight gain, specific growth ratio, relative growth ratio and required power.

The experimental results reveal that the highest biomass of (13.53 kg/m³) while dead fish (3 fish/m³) was acceptable under the following conditions: use of the round fish tank, use of air compressor with inter-holes distance of 150 mm as an aeration regime and adjust stocking density at 200 fish/m³.