

Mansoura University Faculty of Agriculture Dept. of Agric. Engineering

Engineering Study on Controlling Broadcasting Machine Feeding Rate

By

Gazbia Fahmi El-Sherbini Abu-Shady

B.Sc. Agric. Mech. Mansoura University, 1988 MSc., Agric. Eng., Mansoura University, 2007

Thesis Submitted in Partial Fulfillment of the

Requirements for Degree of Doctor of Philosophy

In Agricultural Science (Agricultural Engineering)

Supervisors

Prof. Dr.

Hosny El-Shabrawy

Prof. of Agric. Engineering Fac. of Agric., Mansoura University

Prof. Dr. Samy Al - Said Badr

Prof. of Agric. Engineering Agric. Eng. Res. Institute

Prof. Dr. Mohamed Ahmed El-Sheikha

Prof. of Agric. Engineering Fac. of Agric., Mansoura University

Prof. Dr. Mohamad Maher Mohamad Ibrahim

Assistant Professor Department of Agricultural Engineering Mansoura University

Arab Republic of Egypt - Mansoura University 2019

CNONTENTS

Subject	Page
Introduction	1
Review of literature	3
1 wheat crop important	3
2 Sowing method	4
3 Broadcasting Advantages and Disadvantages	6
3.1 Manually broadcasting	6
3.2 Mechanical broadcasting	7
3.2.1 Advantage of mechanical broadcasting	7
3.2.2 Broadcasting machines	8
4 Factors Affecting Seeds Distribution	9
4.1 Physical properties of seeds/grains	9
4.2 Construction of broadcasting machine	11
4.2.1 Plate diameter and speed	11
4.2.2 Shape and blades numbers	12
4.2.3 Shape of distribution pattern	12
5. Spreader Considerations	13
6.Pattern Adjustments	16
7. Costs Evaluates	16
MATERIALS AND METHODS	19
1.Materials	19
1.1 VICON Pendulum-broadcasting machine	19
1.2 The modification of broadcasting	21

Subject	Page
1.3 Tractor description	29
1.4 Experimental location	29
1.5 Grain varieties	29
2 Measuring Instruments	30
3. Laboratory experiments	32
3.1 Grain properties	32
3.2 Measure angle of tube	33
3.3 Soil mechanical analysis	33
3.4 Soil moisture Content	33
3.5 The laboratory calibration	33
3.5.1 Spring calibration	33
3.5.2 Laboratory calibration of pendulum broadcast spreader	35
3.5.3 Determining the centrifugal force	38
3.6 Field experimental	40
4 Measurements	40
4.1 Indoor measurements	40
4.1.1 - Calculation Springs forces to length and spring index	40
4.1.2- Wheat grain rate, g/m^2	40
4.1.3- Calculating the wheat application rate per feddan, kg/fed	40
4.2 Outdoor measurement	41
4.2.1- Number of wheat seedling $/m^2$	41
4.2.2- Fuel consumption, L/Fed	41
4.2.3 - Slip ratio %	41
4.2.4 - The specific energy	41

Subject	Page
4.2.5 - Theoretical field capacity	42
4.2.6 - Effective field capacity	42
4.2.7 Field efficiency "η _t "	42
5 Cost Evaluation	43
6 Statistical Analysis	44
RESULTS AND DISCUSSIION	45
1 The Laboratory Experiments	45
1.1 Criteria for judging the wheat-grain rate (g/m^2)	45
1.2 Criteria for Judging the wheat application rate per feddan	49
2 Field Experiments	52
2.1 Criteria for judging the change in number of wheat seedling per square meter (WSN)	52
2.2 Judging criteria of change in fuel consumption rate L/fed	56
2.3 Judging the variable parameters on slip ratio% of tractor	59
2.4 Criteria for (WBP) judging the change in energy requirement, kW.h/fed	62
2.5 Field capacity and efficiency calculation	65
3 Cost Analysis	68
SUMMARY AND CONCLUSION	70
REFERENCES	76
APPENDIX AND STATISTICAL ANALYSIS	82
ARABIC SUMMARY	5:1

LIST OF TABLES

Subject	Page
Table 3.1: The technical specification of VICON broadcasting	20
Table 3.2: Tractor specifications	29
Table 3.3: Soil analysis and texture	30
Table 3.4: Wheat grain properties and Tube grain angle	30
Table 3.5: Specifications of springs	35
Table (4-20): Effect of forward speed on theoretical and actual field capacity and operating efficiency %.	66
Table (4-1): Costs analysis	68
Table (A-1): Determination the result of centrifugal forces (F)	82
Table (A-2): Effect of (WBP) forward speed on wheat grain rate (g/m^2) under three different balls mass of governor (BMG, g)	83
Table (A-3): Effect of (WBP) forward speed on wheat grain rate, (g/m^2) under four different spring index ratio of pulling lever (SIPL).	84
Table (A-4): Effect of WBP forward speed on wheat grain rate (WGR, g/m^2) under sprocket wheal transmission systems (SWTS)	85
Table (A-5): Effect of WBP forward speed on wheat application kg/ feddan under three different balls mass of governor	86
Table (A-6): Effect of WBP forward speed on wheat application rate perfeddan (WARF) under four different spring index ratio (SIPL)	87
Table (A-7): Effect of WBP forward speed on wheat application rate perfeddan (WARF) under sprocket wheal transmission system (SWTS)	88
Table (A-8): Effect of WBP forward speed on wheat seedling per square meter (WSN) under three different balls mass of governor (BMG, g)	89
Table (A-9): Effect of WBP forward speed on wheat seedling per square meter (WSN) under four different spring index of pulling lever (SIPL)	90

L

Subject	Page
Table (A-10): Effect of WBP forward speeds (S) on number of wheat seedling per square meter (WSN) under sprocket wheel transmission systems	91
(SWTS)	
Table (A-11): Effect of WBP forward speed on fuel consumption rate L/fed	92
under three different balls mass of governor (BMG, g)	
Table (A-12): Effect of WBP forward speed on fuel consumption rate, L/fed.	93
under four different spring index ratio of pulling lever (SIPL)	
Table (A-13): Effect of (WBP) forward speeds on fuel consumption rate L/fed	94
under sprocket wheal transmission system (SWTS)	
Table (A-14): Effect of (WBP) forward speed slip rat10 %. under three	95
different balls mass of governor (BMG, g)	
Table (A-15): Effect of (WBP) forward speed on slip rat1o %.under four	96
different spring index ratio of pulling lever (SIPL)	
Table (A-16): Effect of (WBP) forward speeds on slip rat10 %. of tractor	97
under sprocket wheal transmission systems (SWTS)	
Table (A-17): Effect of (WBP) forward speed on energy requirement,	98
kW.h/fed under three different balls mass of governor (BMG, g).	
Table (A-18): Effect of (WBP) forward speed on energy requirement,	99
kW.h/fed. under four different spring index ratio of pulling lever (SIPL)	
Table (A-19): Effect of (WBP) forward speed on energy requirement,	100
kW.h/fed under sprocket wheal transmission systems (SWTS)	
Table (A-20): Effect of (WBP) forward speed on theoretical field capacity,	101
actual field k, and efficiency %	
Table (A-21): Analysis of variance, probability for the effect tested factor on	102
wheat grain rate, g/m ²	
Table (A.22): Analysis of variance, probability for the effect tested factor on	103
wheat application rate per feddan.	
Table (A-23): Analysis of variance, probability for the effect tested factor on	104
number of wheat seedling per square meter	10.
Table (A-24): Analysis of variance, probability for the effect tested factor on	105
fuel consumption, L/fed	

Subject	Page
Table (A-25): Analysis of variance, probability for the effect tested factor on slip ratio,% of tractor	106
Table (A-26): Analysis of variance, probability for the effect tested factor onEnergy requirement, kW.h/fed	107

LIST OF FIGERS

Subject	Page
Fig (2.1): Spinner blade angle	11
Fig. (2.2): Pendulum spreader	13
Fig. (2.3): The reciprocating spreader (a) the spout of spreader (b) cross- sec.	
of spout.	15
Fig. 3.1: The VICON broadcasting machine before modification	20
Fig. 3.2: A schematic of broadcasting machine (before development	22
Fig.3.3: A schematic of grain broadcasting prototype	23
Fig. 3.4: Schematic of modification broadcasting prototype	25
Fig 3.5: Transmission system	26
Fig. 3.6: Schematic side view of transmission system	26
Fig. 3.7: Governor Device of spreader	27
Fig. 3.8: Schematic of governor device	27
Fig. 3.9: Three couples of balls balancing mass	28
Fig. 3.10: A group of spring's specification of pulling lever (SSPL)	28
Fig. 3.11: The electronic balance	30
Fig. 3.12: The wooden frame	31
Fig. 3.13: The Petri dishes	32
Fig. 3.14: Spring calibration and measuring the increment in length it	34
Fig. 3.15: Determined the swath width and quantity of grain	37
Fig. 3.16: schematic placement broadcasting machine on rear tractor	37
Fig. 3.17: Determination of the swath width	38

Subject	Page
Fig.3.18: The outdoor experiment	40
Fig. (4.1) effect of different forward speed (S) on wheat grain rate under	
different each of (a) BMG, (b) SIPL and (c) SWTS	47
Fig. (4-2) effect of different forward speeds (S) on wheat application rate	
under each of (a) BMG; (b) SIPL and (c) and SWTS	51
Fig. (4 - 3) Effect of different forward speeds on number of wheat seedling	
per m ² under different of (a) BMG, (b) SIPL and (c) SWTS	55
Fig.(4-4): Effect of different "WBP" forward speed on fuel consumption	
under different each of (a) BMG, (b) SIPL and (c) SWTS	58
Fig.(4-5):Effect of "WBP" forward speed on slip ratio% under different each	
of (a) BMG, (b) SIPL and (c) SWTS	61
Fig. (4-6): Effect of "WBP" forward speed on energy requirement KW.h/fed	
under different each of (a) ball mass; (b)springs index and (c) transmission	
systems	64
Fig. (4.7): Effect of "WBP" forward speed on actual field capacity; theoretical	
field capacity and field efficiency, %.under different each of (a) BMG; (b)	
SIPL	67

ABSTRACT

This study was carry out to conduct the laboratory and field performance of the pendulum broadcast spreader in term of field capacity, field efficiency, wheat grain rate (g/m^2) , wheat application rate per faddan, number of plant per matter square ,fuel consumption rate, slip ratio %, energy requirement, criterion cost and determine the optimum parameters affecting the performance the modified pendulum broadcast spreader.

Laboratory and field results indicated that: the performance of the modified broadcasting implement will be influenced by tractor forward speed, balls mass of governor, group of springs specification of pulling lever grain out, sprocket wheel transmission systems. The developed attained by adding unit transmission systems, controlling unit and group of spring specification of pulling lever which moving lever feeding disc in the towered to increase widely feeding out area or narrow according to increasing or decreasing speed of broadcasting implement.

The main result of the present study revealed that, the modified pendulum broadcast spreader implement is recommended to be use for broadcasting wheat grain and some other crops, because it fulfill the requirement of agronomy such as low application rate to 57.4 kg/fed, increasing actual field capacity, low cost, and reduced farmer effort with following parameters such as forward speed 4.5 km/h, balls mass of governor about 200 gram, spring specification index ratio of pulling lever about 10.92 and group of sprocket wheel transmission systems (37and18teeth) is recommended for broadcasting wheat grain using the modified implement.