

Isolation and Utilization of Bacteriocin-Producing Lactic Acid Bacteria as a Bio-Preservative Agent in Soft Cheese

By

AHMED ABDELRHMAN MOHAMED ELMAHDY

B.Sc. Agric. (Dairy), Faculty of Agric. Kafrelsheikh, Tanta University, 2001

M.Sc. Agric. (Dairy), Faculty of Agric., Kafrelsheikh University, 2011

THESIS

Submitted in Partial Fulfillment of the Requirements

For The Degree of Doctor of Philosophy

In Agricultural Science (DAIRY)

То

Dairy Science Department, Faculty of Agriculture, Kafrelsheikh University

2018

Isolation and Utilization of Bacteriocin-Producing Lactic Acid Bacteria as a Bio-Preservative Agent in Soft Cheese

By

AHMED ABDELRHMAN MOHAMED ELMAHDY

This Thesis PhD Degree has been approved by:

Prof.: Mohamed Y. Khalifa Prof Emeritus of Dairy Science, Kafrelsheikh University, Egypt Prof.: Gaber A. El-Baradei Prof Emeritus of Dairy Science, Alexandria University, Egypt Prof.: Mohsen A. Zommara Prof and head of Dairy Science, Kafrelsheikh University, Egypt Dr.: Shady N. El-Ghaish Associate Prof of Dairy Science, Kafrelsheikh University, Egypt Committee in charge, /12/2017

Isolation and Utilization of Bacteriocin-Producing Lactic Acid Bacteria as a Bio-Preservative Agent in Soft Cheese

By

AHMED ABDELRHMAN MOHAMED ELMAHDY

B.Sc. Agric. (Dairy), Faculty of Agric. Kafrelsheikh, Tanta University, 2001

M.Sc. Agric. (Dairy), Faculty of Agric., Kafrelsheikh University, 2011

Under the supervision of:

Prof. MOHAMMED YOUSEF KHALIFA

Professor Emeritus of Dairy Science, Dairy Science Department, Faculty of Agriculture, Kafrelsheikh University, Egypt.

Prof. HAMDY SAID MOHAMED ELTAWEEL

Emeritus Chief Researcher of Dairy Science, Food Technology Research Institute, Agriculture Research Center, Egypt.

Dr. SHADY NABIL EL-GHAISH

Associate Professor of Dairy Science, Dairy Science Department, Faculty of Agriculture, Kafrelsheikh University, Egypt.

Isolation and Utilization of Bacteriocin-Producing Lactic Acid Bacteria as a Bio-Preservative Agent in Soft Cheese

By

AHMED ABDELRHMAN MOHAMED ELMAHDY

This Thesis PhD Degree has been approved by:

Prof.: Gaber A. El-Baradei
Prof Emeritus of Dairy Science, Alexandria University, Egypt
Prof.: Mohamed Y. Khalifa
Prof Emeritus of Dairy Science, Kafrelsheikh University, Egypt
Prof.: Mohsen A. Zommara
Prof and head of Dairy Science, Kafrelsheikh University, Egypt
Dr.: Shady N. El-Ghaish
Associate Prof of Dairy Science, Kafrelsheikh University, Egypt
Committee in charge,

/12/2017

Isolation and Utilization of Bacteriocin-Producing Lactic Acid Bacteria as a Bio-Preservative Agent in Soft Cheese

By

AHMED ABDELRHMAN MOHAMED ELMAHDY

This Thesis PhD Degree has been approved by:

/12/2017

Isolation and Utilization of Bacteriocin-Producing Lactic Acid Bacteria as a Bio-Preservative Agent in Soft Cheese

By

AHMED ABDELRHMAN MOHAMED ELMAHDY

This Thesis PhD Degree has been approved by:

Prof.: Gaber A. El-Baradei
Prof Emeritus of Dairy Science, Alexandria University, Egypt
Prof.: Mohsen A. Zommara
Prof and head of Dairy Science, Kafrelsheikh University, Egypt
Prof.: Mohamed Y. Khalifa
Prof Emeritus of Dairy Science, Kafrelsheikh University, Egypt
Dr.: Shady N. El-Ghaish
Associate Prof of Dairy Science, Kafrelsheikh University, Egypt
Committee in charge,

/12/2017

Isolation and Utilization of Bacteriocin-Producing Lactic Acid Bacteria as a Bio-Preservative Agent in Soft Cheese

By

AHMED ABDELRHMAN MOHAMED ELMAHDY

This Thesis PhD Degree has been approved by:

Abstract

Isolation and utilization of bacteriocin-producing lactic acid bacteria (LAB) as a bio-preservative agent in soft cheese was studied. The results exerted that thirty-four isolates from 514 showed antimicrobial activity against *Lactobacillus bulgaricus* 340 after incubation for 24 hrs at 37 °C. Moreover, five isolates were active against *Listeria monocytogenes* EGDEe107776. Molecular biology of the five LAB isolates, that had antimicrobial activity against *Listeria monocytogenes* EGDEe107776 were identified as *Lactococcus lactis* subsp. *lactis* A15, *Lactococcus lactis* subsp. *lactis* A16, *Enterococcus faecium* A15, *Enterococcus faecium* A16 and *Enterococcus faecium* A17 by 16S rRNA gene sequences. *Lactococcus lactis* subsp. *lactis* A15 had produced only bacteriocin while *Enterococcus faecium* A15 produced other antimicrobial substances, such as H₂O₂ beside bacteriocin. *Lactococcus lactis* subsp. *lactis* A15 and *Enterococcus faecium* A15 were more active between pH 5 and 8 and that activity was decreased at pH 2 and pH 10.

The effect of heat treatment and time on the bacteriocin activity showed no effect up to 100 °C for 10 min. in case of Lactococcus lactis subsp. lactis A15 and 20 min. for Enterococcus faecium A15. Maximum bacteriocin activity produced by Lactococcus lactis subsp. lactis A15 was observed at the end of logarithmic phase (at 37 °C for 11 hrs) and still stable until the end of incubation (48 hrs). On the other hand, maximum bacteriocin production for Enterococcus faecium A15 was clear in the logarithmic phase at 37 °C for 6 hrs, and consequently decreased until 24 hrs of incubation. Structural gene study of the produced bacteriocin for Lactococcus lactis subsp. lactis A15 and Enterococcus faecium A15 was defined as nisin Z and enterocin B, respectively. PCR analysis and haemolytic activity did not show presence of the (Cytolysin A) cyl A gene and γ -haemolytic for both. The results also, showed no gelatin lysis by Lactococcus lactis subsp. lactis A15 but had gelatin lysis by Enterococcus faecium A15. The effect of bacteriocinogenic strains Lactococcus lactis subsp. lactis A15 and Enterococcus faecium A15 as protective cultures to control growth of pathogenic bacteria (Listeria monocytogenes) in UHT milk, was more efficient on BHI broth media. In all cases, the number of Listeria monocytogenes was increased after 8 hrs when purified bacteriocin was used. The resultant white soft cheese acceptability and quality was significantly improved by both Lactococcus lactis subsp. lactis A15 strain and enterocin when compared with control cheese.

It can be concluded that *Lactococcus lactis* subsp. *lactis* A15 can be used as a culture or co-culture for improving white soft cheese quality. Moreover, enterocin produced by *Enterococcus faecium* A15 can be also used as a bio-preservative agent for improving cheese quality.

Contents

Contents	Pages
1. Introduction	1
2. Review of literature	7
2.1. Food preservatives	7
2.2. The bio-preservation	9
2.3. Listeria monocytogenes	11
2.4. Lactic acid bacteria (LAB)	13
2.4.1. Identification and classification	13
2.4.2. Importance of LAB	15
2.4.3. Application	18
2.4.4. Bacteriocin of lactic acid bacteria	19
2.4.4.1. Definition	19
2.4.4.2. Classification	20
2.4.4.3. Mode of action of bacteriocins	24
2.4.4.4. Factors affecting bacteriocin efficiency	28
2.4.4.5. Application	36
2.4.4.6. Toxicity	45
3. Material and Methods	47
3.1. Materials	47
3.1.1. Chemicals, enzymes, and antibiotics	47
3.2. Methods	47
3.2.1. Isolation and pre-Identification of antimicrobial lactic acid bacteria (LAB) isolates	47
3.2.1.1. Origin of isolates	47
3.2.1.2. Isolation, purification and pre-identification of LAB cultures	48
3.2.2. Antimicrobial activity	49
3.2.2.1. Indicator strains	49

3.2.2.2. Determination of bacteriocin activity by agar well diffusion assay	50
3.2.3. Molecular identification of some selected LAB isolates using 16S rRNA gene sequencing	50
3.2.4. Screening for Genes Encoding bacteriocins	51
3.2.5. Safety evaluation	53
3.2.5.1. Detection of virulence factors by PCR amplification	53
3.2.5.2. Haemolysis and gelatinase activity	54
3.2.5.3. Disk diffusion antibiotic sensitivity testing	55
3.2.6. Factors affecting antimicrobial activity	55
3.2.6.1. Effect of enzymes on bacteriocin activity	55
3.2.6.2. Effect of pH on bacteriocin activity	56
3.2.6.3. The stability of bacteriocin activity against of heat treatment	56
3.2.7. Determination of <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15 and <i>Enterococcus faecium</i> A15 growth for maximal bacteriocin production	56
3.2.8. Purification of bacteriocins from <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15 and <i>Enterococcus faecium</i> A15	57
3.2.9. Evaluation of antilisterial activity for both gained strains as well as their bacteriocin on both BHI broth and UHT milk.	60
3.2.10. Application	61
3.2.10.1. Cheese manufacture	61
3.2.10.2. Cheese analysis	61
3.2.10.2.1. Chemical and physical analysis of cheese	62
3.2.10.2.1.1. Total solids (TS) and Moisture contents (%)	62
3.2.10.2.1.2. Fat content (%)	62
3.2.10.2.1.3. Protein and Total nitrogen (TN) contents (%)	62
3.2.10.2.1.4. Salt content (%)	62
3.2.10.2.1.5. Soluble nitrogen (SN) (%)	62
3.2.10.2.1.6. Total volatile fatty acids (TVFA) (ml 0.1 N	62

NaOH/ 100g cheese)	
3.2.10.2.1.7. pH value and titratable acidity	63
3.2.10.2.2. Microbiological analysis of cheese	63
3.2.10.2.2.1. Total Bacterial Count (TBC)	63
3.2.10.2.2.2. Proteolytic bacterial count (PBC)	63
3.2.10.2.2.3. Lipolytic bacteria count (LBC)	63
3.2.10.2.2.4. Fungi and Yeasts Count (FYC)	64
3.2.10.2.3. Bacteriocin activity in cheese	64
3.2.10.2.4. Sensory evaluation of cheese	64
3.2.10.3. Statistical analysis	64
4. Results and discussion	65
4.1. Part I: Isolation and identification of lactic acid bacteria (LAB) with antimicrobial activity from traditional Egyptian dairy products.	65
4.1.1. Isolation and pre-identification of antimicrobial presumed LAB producing strains	65
4.1.2. Antimicrobial activity	67
4.1.2.1. Antimicrobial activity of presumed LAB isolates as measured on MRS agar against <i>Lactobacillus bulgaricus</i> 340	67
4.1.2.2. Indicator strains and cultures condition	68
4.1.3. Molecular identification of selected antimicrobial active presumed LAB isolates against <i>Listeria monocytogenes</i> using 16S rRNA gene sequencing	70
4.1.4. Screening for Genes Encoding Bacteriocins	71
4.1.5. Safety evaluation	75
4.1.5.1. Detection of virulence factors by PCR amplification	75
4.1.5.2. Haemolysis and gelatinase	78
4.1.5.3. Disk diffusion antibiotic sensitivity testing	79
4.1.6. Factors affecting antimicrobial activity	82
4.1.6.1. Effect of Enzymes	82

4.1.6.2. Effect of pH	84
4.1.6.3. Effect of heat treatment	86
4.1.7. Determination of <i>Lactococcus lactis</i> subsp. lactisA15 and <i>Enterococcus</i> faeciumA15 growth for maximal bacteriocins production	88
4.2. Part II : Purification of bacteriocin produced by <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15 and <i>Enterococcus faecium</i> A15	91
4.2.1. Purification of bacteriocin from <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15	91
4.2.2. Purification of bacteriocin from <i>Enterococcus</i> <i>faecium</i> A15	96
4.3. Part III : Study the effect of both identified strains (<i>Lactococcus lactis</i> subsp. <i>lactis</i> A15 and <i>Enterococcus faecium</i> A15) as well as their purified bacteriocins on <i>Listeria monocytogenes</i> growth.	102
4.3.1. Inhibition of <i>Listeria monocytogenes</i> by <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15	102
4.3.2. Inhibition of <i>Listeria monocytogenes</i> by purified bacteriocin produced from <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15	104
4.3.3. Inhibition of <i>Listeria monocytogenes</i> by Enterococcus faecium A15	106
4.3.4. Inhibition of <i>Listeria monocytogenes</i> by purified bacteriocin produced from <i>Enterococcus faecium</i> A15	108
4.4. Part IV : Improving white soft cheese quality using <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15 and enterocin produced by <i>Enterococcus faecium</i> A15	111
4.4.1. Chemical and physical analysis	111
4.4.1.1. Total solids (TS) and moisture contents (%)	111
4.4.1.2. Fat contents (%)	114
4.4.1.3. Protein contents (%)	115
4.4.1.4. Salt contents (%)	116
4.4.1.5. Soluble nitrogen (SN%) and SN/TN%	117

CONTENTS

4.4.1.6. Total volatile fatty acids (TVFA)	119
4.4.1.7. Titratable acidity (TA) and pH values	120
4.4.2. Microbiological analysis of cheese	122
4.4.2.1. Total bacterial count (TBC)	122
4.4.2.2. Proteolytic and lipolytic bacterial count	124
4.4.2.3. Yeasts and moulds counts (Y&M)	126
4.4.3. Bacteriocin activity	127
4.4.4. Organolyptic properties	128
5. Summary and Conclusion	133
6. References	140
7. Appendix	164
8. Arabic summary	

List of Tables

No.	Tables	Pages
Table (1)	Categorization of procedures used to preserve foods	8
Table (2)	Application of bacteriocins in food as a bio-preservation	43
Table (3)	Polymerase Chain Reaction (PCR) primers and products used for the detection of genes encoding bacteriocins	52
Table (4)	Polymerase Chain Reaction (PCR) primers and products used for the detection of genes coding virulence factors	54
Table (5)	Pre-identification of presumed LAB isolates from dairy products collected from Kafrelsheikh governorate	66
Table (6)	Inhibition zone diameter (mm) of various antimicrobial presumed LAB isolates on MRS agar media against <i>Lactobacillus bulgaricus</i> 340 after 24 hrs of incubation at 37 °C	67
Table (7)	Antimicrobial spectrum of lactic acid bacteria presumed isolates supernatants by using agar well diffusion assay	69
Table (8)	Antibiotic resistance profile of isolated <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15 and <i>Enterococcus faecium</i> A15 strains	80
Table (9)	Effect of some enzymes on the antimicrobial activity of isolated <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15 and <i>Enterococcus faecium</i> A15 strains	83
Table (10)	Effect of pH on the antimicrobial activity of isolated Lactococcus lactis subsp. lactis A15 and Enterococcus faecium A15 strains	85
Table (11)	Effect of heat treatment on the antimicrobial activity of isolated <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15 and <i>Enterococcus faecium</i> A15 strains	87
Table (12)	Antimicrobial spectrum of partially purified bacteriocin of <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15 using agar well diffusion assay	92
Table (13)	Antimicrobial spectrum of partially purified bacteriocin of <i>Enterococcus faecium</i> A15 using agar well diffusion assay	98
Table (14)	Effect of <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15 on the growth of <i>Listeria monocytogenes</i> in BHI broth medium and UHT milk	103

Table (15)	Effect of bacteriocin produced by <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15 on the growth of <i>Listeria monocytogenes</i> in BHI broth medium and UHT milk	105
Table (16)	Effect of <i>Enterococcus faecium</i> A15 on the growth of <i>Listeria monocytogenes</i> in BHI broth medium and UHT milk	107
Table (17)	Effect of bacteriocin produced by <i>Enterococcus faecium</i> A15 on the growth of <i>Listeria monocytogenes</i> in BHI broth medium and UHT milk	109
Table (18)	Changes in chemical properties of white-soft cheese during storage for 60 days at $(6 \pm 2 \ ^{\circ}C)$	112
Table (19)	Changes in soluble nitrogen (SN), total nitrogen (TN) and total volatile fatty acids (TVFA) of white-soft cheese during storage for 60 days (at 6 ± 2 °C)	118
Table (20)	Changes in Titratable acidity (TA) and pH values of white- soft cheese during storage for 60 days (at 6 ± 2 °C)	121
Table (21)	Changes in microbiology parameters of white-soft cheese during storage for 60 days (at 6 ± 2 °C)	123
Table (22)	Bacteriocin activity of treated white-soft cheese during storage for 60 days (at 6 ±2 °C) against <i>Listeria</i> <i>monocytogenes</i>	128
Table (23)	Sensory evaluation of white-soft cheese during storage for 60 days (at 6 ± 2 °C)	130

List of Figures

No.	Figures	Pages
Fig. 1	Generalized scheme for the fermentation of glucose in lactic acid bacteria	14
Fig. 2	Classification of lactic acid bacteria bacteriocins according to Klaenhammer, 1993	21
Fig. 3	Bacteriocins classification scheme of Heng et al.,2007	22
Fig. 4	Classification scheme of Franz <i>et al.</i> ,2007 for <i>enterococcal</i> bacteriocins	23
Fig. 5	The mode of action of bacteriocins	27
Fig. 6	Isolation, purification and pre-identification of LAB cultures collected from local markets of Kafrelsheikh governorate	49
Fig. 7	Manufacture of white soft cheese	61
Fig. 8	Antimicrobial activity in the presence of different isolates on MRS agar against <i>Lactobacillus bulgaricus</i> 340	67
Fig. 9	Nisin genes screening of the strain <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15	72
Fig. 10	Enterocin genes screening of the strain <i>Enterococcus faecium</i> A15	73
Fig. 11	Multiplex PCR of control strains <i>Enterococcus faecalis</i> MMH594, <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15 and <i>Enterococcus</i> <i>faecium</i> A15	76
Fig. 12	Gelatinase and haemolytic activities for <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15 and <i>Enterococcus faecium</i> A15	79
Fig. 13	Time course of bacteriocin production during the growth of Lactococcus lactis subsp. lactis A15 in M17 broth at 37°C	88
Fig. 14	Time course of bacteriocin production during the growth of <i>Enterococcus faecium</i> A15 in M17 broth at 37°C	89
Fig. 15	Antimicrobial activity after and before bacteriocin precipitation by ammonium sulfate from <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15	91
Fig. 16	Antimicrobial activity after and before bacteriocin separated on a reversed-phase cartridge (Sep-Pak tC ₈ 12 cc) from <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15	93
Fig. 17	Antimicrobial activity after and before bacteriocin separated on a	94

	cation-exchange column from <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15	
Fig. 18	Reversed-phase chromatograms of purified bacteriocin from Lactococcus lactis subsp. lactis A15	95
Fig. 19	Antimicrobial activity for two peaks (I and II) materials after separated on RP-HPLC (System [®] C ₈ 3.5) from <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15	95
Fig. 20	Antimicrobial activity after and before bacteriocin precipitation by ammonium sulfate from <i>Enterococcus faecium</i> A15	97
Fig. 21	Antimicrobial activity after and before bacteriocin separated on a reversed-phase cartridge (Sep-Pak tC ₁₈ 12 cc) from <i>Enterococcus faecium</i> A15	99
Fig. 22	Antimicrobial activity after and before bacteriocin separated on a cation-exchange column from <i>Enterococcus faecium</i> A15	100
Fig. 23	Reversed-phase chromatograms of purified bacteriocin from <i>Enterococcus faecium</i> A15	100
Fig. 24	Antimicrobial activity for two peaks (I and II) materials after separation on RP-HPLC (System [®] C ₈ 3.5) from <i>Enterococcus</i> <i>faecium</i> A15 on MRS agar against <i>Lactobacillus bulgaricus</i> 340	101
Fig. 25	Effect of <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15 on the growth of <i>Listeria monocytogenes</i> in BHI broth medium and UHT milk	104
Fig. 26	Effect of bacteriocin produced by <i>Lactococcus lactis</i> subsp. <i>lactis</i> A15 on the growth of <i>Listeria monocytogenes</i> in BHI broth medium and UHT milk	106
Fig. 27	Effect of <i>Enterococcus faecium</i> A15 on the growth of <i>Listeria monocytogenes</i> in BHI broth medium and UHT milk	108
Fig. 28	Effect of bacteriocin produced by <i>Enterococcus faecium</i> A15 on the growth of <i>Listeria monocytogenes</i> in BHI broth medium	110
Fig. 29	Changes in cheese total solids content during storage	113
Fig. 30	Changes in cheese fat content during storage	115
Fig. 31	Changes in cheese protein content during storage	116
Fig. 32	Changes in cheese salt content during storage	117
Fig. 33	Changes in cheese soluble nitrogen (SN) content during storage	119
Fig. 34	Changes in cheese total volatile fatty acids content during	119

LIST OF FIGURES

	storage	
Fig. 35	Changes in titratable acidity and pH values during storage	121
Fig. 36	Changes in total bacterial count (TBC) of white-soft cheese during storage	124
Fig. 37	Changes in Proteolytic and lipolytic bacterial counts of white- soft cheese during storage	126
Fig. 38	Changes in Yeasts and moulds counts of white-soft cheese during storage	127
Fig. 39	Changes in sensory evaluation of white-soft cheese during storage	131