CHEMICAL STUDIES ON PHOTOSYNTHETIC EFFICIENCY OF C3 AND C4 CROPS UNDER CLIMATE CHANGE CONDITIONS

By

BEELAL ALI ABDELHAMED ALI

B.Sc. Agric. Science (Biochemistry), Faculty of Agric. Cairo, Al-Azhar Univ. 2006 M.Sc. Agric. Science (Biochemistry.), Faculty of Agric. Cairo, Al-Azhar Univ. 2012

THESIS Submitted in Partial Fulfillment of the Requirements for the Degree

Of DOCTOR OF PHILOSOPHY

In

AGRICULTURAL SCIENCES (Agric. Biochemistry)

Department of Agric. Biochemistry Faculty of Agriculture, Cairo Al-Azhar University

1439 A.H. 2018 A.D.

APPROVAL SHEET

NAME: BEELAL ALI ABDELHAMED ALI TITLE: CHEMICAL STUDIES ON PHOTOSYNTHETIC EFFICIENCY OF C3 AND C4 CROPS UNDER CLIMATE CHANGE CONDITIONS

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree

Of DOCTOR OF PHILOSOPHY

In AGRICULTURAL SCIENCES (Agric. Biochemistry)

Department of Agric. Biochemistry Faculty of Agriculture, Cairo Al-Azhar University

1439 A.H. 2018 A.D.

2018 A.D.

Approved By: Prof. Dr. MAHMOUD ABD-ELRAZEK GOMAA DOHEM . M. Prof. of Biochemistry, Dept. of Biochemistry, Faculty of Agric. Zagazig Univ. Prof. Dr. ASSEM FATHY EL-MAGHRABY A. Prof. of Biochemistry, Dept. of Agric. Biochemistry, Faculty of Agric. Cairo, Al-Azhar Univ. Prof. Dr. HANY YOUSEF MOHAMED Y. Prof. of Biochemistry, Dept. of Agric. Biochemistry, Faculty of Agric. Cairo, Al-Azhar Univ. Prof. Dr. TAHER BAHGAT FAYED T. Prof. of Crop Physiology, Dept. of Agronomy, Faculty of Agric. Ain Shams Univ. Date: 9/1/2018

NAME: BEELAL ALI ABDELHAMED ALI TITLE: CHEMICAL STUDIES ON PHOTOSYNTHETIC EFFICIENCY OF C3 AND C4 CROPS UNDER CLIMATE CHANGE CONDITIONS

THESIS Submitted in Partial Fulfillment of the Requirements for the Degree

Of DOCTOR OF PHILOSOPHY

In AGRICULTURAL SCIENCES (Agric. Biochemistry)

Department of Agric. Biochemistry Faculty of Agriculture, Cairo Al-Azhar University

1439 A.H.

2018 A.D.

Supervision Committee: Prof. Dr. HANY YOUSEF MOHAMED You Management Prof. of Biochemistry, Dept. of Agric. Biochemistry, Faculty of Agric. Cairo, Al-Azhar Univ. Prof. Dr. MOHAMED MABROUK ELDANASOURY Magnetic Cairo, Al-Azhar Prof. of Biochemistry, Dept. of Agric. Biochemistry, Faculty of Agric. Cairo, Al-Azhar Univ. Prof. Dr. TAHER BAHGAT FAYED Magnetic Cairo, Al-Azhar Prof. of Crop Physiology, Dept. of Agronomy, Faculty of Agric. Ain Shams Univ.

Prof. of Crop Physiology, Dept. of Agronomy, Faculty of Agric. Ain Shafis Univ. Prof. Dr. MOSAAD KOTB KOTB HASSANEIN Marken gessare in Head Researcher, Field Crops Research Institute, Agricultural Research Center.

ABSTRACT

Recently, one of the most important environmental challenges that face plant production is the phenomenon of climate change that results mainly from the increases in temperature and elevation of CO_2 concentrations in air. This investigation was conducted to detect the effect of temperature increase alone and in combination with CO_2 concentration increase on growth, productivity and biochemical constituents of wheat (C3 crop) and maize (C4 crop).

The results show a negative impact on the efficiency of photosynthesis in wheat (C3) and a decreases in number of leaves / plant and percentage of carbohydrates while the amounts of glycine and serine amino acids were increased. glycine and serine amino acids levels were used as a new method to detect the photorespiration activity level.

Obtained results from the effect of climate change on maize (C4) revealed no change in number of leaves and an increase in carbohydrates percentage and a sharp reduction in malic acid. Malic acid level in maize leaves was used in this investigation as a new indicator to recognize the activity level of Hatch-Slack pathway in maize (C4 plant) under climate change conditions. Climate change heat stress (+ $4-5^{\circ}$ C) is detrimental to Hatch-Slack pathway activity in mesophyll, but without noticeable decline impact on Calvin pathway activity in bundle-sheath.

CONTENTES

Page

1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	5
(1)	Photosynthetic efficiency of crop plants	5
(2)	Climate change phenomena	10
(3)	Climate change indices impacts on crop plants	15
(3.1)	Effect of temperature increases	16
(3.1.1)	Effect of temperature increases on plant growth	19
(3.1.2)	Effect of temperature increases on plant yield	21
(3.1.3)	Effect of temperature increases on biochemical	
	constituents in plant	24
(3.2)	Effect of CO ₂ concentration increases	29
(3.2.1)	Effect of CO ₂ concentration increases on plant	
	growth	33
(3.2.2)	Effect of CO ₂ concentration increases on plant yield.	36
(3.2.3)	Effect of CO ₂ concentration on biochemical	
	constituents in plant	37
3.	MATERIALS AND METHODS	42
(A)	Crop species	42
(B)	Growth conditions	43
(B.1)	Open field and normal conditions	45
(B.2)	Growing pantry and normal conditions	45
(B.3)	Growing pantry with increase of air temperature in	
	semi automated control chamber	45

(B.4)	Growing pantry with increases of both temperature and	
	CO ₂ concentration in semi automated control chamber	46
(C)	Data recorded	49
(C.1)	Vegetative growth traits	49
(C.1.1)	Wheat vegetative growth criteria	49
(C.1.2)	Maize vegetative data	49
(C.2)	Yield and yield components criteria	49
(C.2.1)	Wheat yield and yield components	49
(C.2.2)	Maize yield and yield components	50
(C.3)	Biochemical analysis	50
(C.3.1)	Determination of photosynthetic pigments in wheat	
	and maize leaves	50
(C.3.2)	Biochemical constituents determination of wheat	
	and maize grains	51
(C.3.3)	Determination of serine and glycine amino acids for	
	wheat fresh leaves	52
(C.3.4)	Determination of malic acid for maize leaves	53
(D)	Experimental design and statistical analysis	54
4.	RESULTS AND DISCUSSION	55
(1)	Response of growth traits	55
(1.1)	Wheat (C3) plant	55
(1.2)	Maize (C4) plant	59
(2)	Response of yield and yield components	63
(2.1)	Wheat (C3) plant	63
(2.1.1)	Number and weight of spikes/ m ² and number of	
	grains/spike	64

(2.1.2)	Height (cm); 100-grain weight (gm) and harvest	
	index	67
(2.1.3)	Grain; straw and biomass yields	70
(2.2)	Maize (C4) plant	74
(2.2.1)	Plant height (cm) and number of ears / plant	75
(2.2.2)	Leaves, stem, ears and biomass weights (gm)/plant	78
(2.2.3)	Numbers of rows/ear and grains/row and 100-grain	
	weight	81
(3)	Response of plant chemical composition	86
(3.1)	Wheat (C3) plant	86
(3.1.1)	Photosynthetic pigments in wheat leaves	87
(3.1.2)	Wheat grains biochemical composition	89
(3.1.3)	Serine and glycin amino acids in flag leaf of wheat	
	plant	93
(3.2)	Maize (C4) plant	95
(3.2.1)	Photosynthetic pigments in maize leaves	95
(3.2.2)	Malic acid content (mg/g) in maize leaves	97
(3.2.3)	Maize grains biochemical composition	99
5.	SUMMARY	103
6.	REFERENCES	114
7.	ARABIC SUMMARY	

Table (1) Temperature data for wheat experimental	
period in the three climitical conditions in the two	
seasons	47
Table (2) Temperature data for maize experimental	
period in the three climitical conditions in the two	
seasons	48
Table (3) Effects of climate change indices	
conditions on height (cm), number of tillers/plant	
and number of leaves/plant of wheat plant after 60	
days from sowing in 2013/2014 and 2014/2015	
growing seasons	58
Table (4) Effects of climate change indices	
conditions on plant height (cm), number of leaves	
per plant and stem diameter (cm) of maize plant after	
60 days from sowing in 2014 and 2015 growing	
seasons	62
Table (5) Effects of climate change indices	
conditions on number of spikes/ m ² , weight of	
spikes/ m ² (gm) and number of grains/ spike of	
wheat plant at harvest in 2013/2014 and 2014/2015	
growing seasons	66
Table (6) Effects of climate change indices	

conditions on height Sch OF OF ABIDE Seight (gm) and harvest index of wheat plant at harvest in 2013/2014 and 2014/2015 growing seasons **68** Table (7) Effects of climate change indices conditions on grain yield/ m^2 (gm), straw yield / m^2 (gm) and biomass yield/ m^2 (gm) of wheat at harvest in 2013/2014-2014/2015 growing seasons 73 Table (8) Effects of climate change indices conditions on height (cm) and number of ears per maize plant at harvest in 2014 and 2015 growing seasons 77 Table (9) Effects of climate change indices conditions on weights of leaves, stem, ears and biomass yield of maize plant at harvest in 2014 and 2015 growing seasons **79** Table (10) Effects of climate change indices conditions on number of rows/ear, number of grains/row and weight of 100 grains (gm) of maize plant at harvest in 2014 and 2015 growing seasons ... 83 Table (11) Effects of climate change indices conditions on chlorophyll a, chlorophyll b and carotenoids in the leaves of wheat plant in 2013/2014 and 2014/2015 growing seasons 89 Table (12) Effects of climate change indices

conditions on grains chemical composition of wheat	
plant in 2013/2014 and 2014/2015 growing seasons	91
Table (13) Effects of climate change indices	
conditions on serine and glycine amino acids in	
percentages flag leaf of wheat plant in 2013/2014	
and 2014/2015 growing seasons	93
Table (14) Effects of climate change indices	
conditions on chlorophyll a, chlorophyll b and malic	
acid in leaves of maize plant in 2014 and 2015	
growing summer seasons	97
Table (15) Effects of climate change indices	
conditions on grains chemical composition of maize	
plant in 2014 and 2015 growing seasons	100

Page

Figure (1) Semi automated growth chambers (A)	44
Figure (2) Semi automated growth chambers (B)	44
Figure (3) RAEGuard carbon dioxide sensor	45

LAIBBRIN FAGLORES

AOS:	Activated Oxygen Species
AR4:	Fourth Assessment Report.
ARC:	Agriculture Research Center
ATP:	Adenosine TriPhosphate
°C:	Degree Celsius
CAM:	Crassulacean Acid Metabolism
CH ₄ :	Methane
CLAC:	Central Laboratory for Agricultural Climate
CO ₂ :	Carbon dioxide
CO ₂ -eq:	Carbon dioxide equivalent
FACE:	Free-Air Concentration Enrichment
FAO:	Food and Agriculture Organization
FCRI:	Field Crops Research Institute
GDP:	Gross Domestic Product
GHG:	Greenhouse Gas
Gt:	Giga ton
HPLC:	High Performance Liquid Chromatography
HSPs	Heat Shock Proteins
IPCC:	Intergovernmental Panel on Climate Change
LSD:	Least Significant Difference
NADPH:	Nicotinamide adenine dinucleotide phosphate
	(Reduced).
N ₂ O :	Nitrous oxide

OAA:	Oxalo Acetic Acid
O ₂ :	Oxygen
PCK:	Phosphoenolpyruvate carboxykinase
PEP:	Phospho Enol Pyrovate
PEPC:	Phosphor Enolpyruvate Carboxylase
PGA:	Phospho Glyceric Acid
PPDK:	Pyruvate phosphate dikinase
Q10:	Temperature-coefficient
ROS	Reactive Oxygen Species
Rubisco:	Ribulose-1,5-bisphosphate carboxylase / oxygenase
RuBP:	Ribulose-1,5-bisphosphate