

BIOREMEDIATION OF HEAVY METAL CONTAMINATED FISH AQUACULTURE USING BACTERIA

Thesis

Submitted for the degree of philosophy of

science

Botany (Microbiology)

ΒY

Samar Saied Sayed Ahmed Mohammed Negm

MSC in Microbiology

Faculty of Science- Banha University (2010)

Botany Department Faculty of Science Zagazig University 2018

BIOREMEDIATION OF HEAVY METAL CONTAMINATED FISH AQUACULTURE USING BACTERIA

A Thesis Submitted

By

Samar Saied Sayed Ahmed Mohammed Negm

MSC in Microbiology

Faculty of Science- Banha University (2010)

For the Requirement of the Degree of Doctor of Philosophy in Science

(Microbiology)

Supervised By

Prof. Dr. Nadia Mohamed Awny El-Houssiny Professor of Microbiology Faculty of Science Zagazig University

Prof. Dr.

Azza Mohamed Abd El-Rahman

Prof. Dr.

Ahmed Salah El-Deen Abd El-Gawad

Prof. of Fish Health, Department of Fish Health, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hamad, Sharkia. Prof. of Ecology and Fish Biology, Department of Ecology and Fish Biology, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hamad, Sharkia.

2018

Abstract

The main objective of this study is the isolation and identification of some heavy metal resistance bacteria from fish farms water sources contaminated with heavy metals, and studies the effects of the bacterial isolates under different culture conditions as temperature, pH and incubation period on removal of heavy metals as Lead, Cadmium, and Copper. Heavy metals pollution with Pb^{+2} , Cd^{+2} and Cu^{+2} ions were determined in industrial and sewage water while, agricultural and fresh water did not showed any pollution with these heavy metals. Two identified morphologically bacterial isolates were and physiologically and confirmed genetically using 16 sRNA techniques as Bacillus Subtilis N₁ and Pseudomonas fluorescens N_2 . The minimum inhibitory concentrations of the two bacterial isolates were; 80, 6.0 and 20.0 mg/l for Pb^{+2} , Cd^{+2} and Cu^{+2} respectively, with using *B. subtilis* N_1 and (350, 6.5 and 40 mg/l) with using Ps. fluorescens N_2 for Pb⁺², Cd⁺² and Cu⁺² respectively. The environmental conditions as incubation period, incubation temperature and pH values were affected the growth rate and heavy metals uptake of the two bacterial isolates. The maximum uptake of Pb^{+2} (70 mg/l) by *B. subtilis* N₁ was achieved after one day of incubation at 30°C and pH7, however, the highest growth rate and uptake of Pb⁺² (300 mg/l) by Ps. fluorescens N_2 was achieved after one day of incubation at 30°C and pH6. The maximum growth of B. subtilis N1 and Ps. fluorescens N_2 in the presence of 5 mg/l Cd^{+2} was achieved when incubated for four days at 25-30°C in medium with pH (7 and 8) respectively. At 10 mg/l Cu⁺² contraction, the *B. subtilis* N_1 became more efficient for bioremediation after 3 days of incubation, at 25°C and pH 8. But, in case of Ps. fluorescens N_2 the maximum uptake of 30 mg/l of Cu^{+2} was achieved after 4 days of incubation at 30°C and pH8. Not only living cells, but also, dead cells of the two isolates had the ability to reduce heavy metal ions after only few mints. TEM examination showed that mechanism of Pb^{+2} ions uptake by B. subtilis N1 were dependent intra-cellular and accumulated outside the cells. It could be concluded that both living and nonliving strains of B. subtilis N1, and Ps. fluorescens N2 had been used in removing toxic metal ions, Pb^{+2} , Cd^{+2} and Cu^{+2} at high concentration. Also, the biosorptive capacity of metal is greatly affected by pH and temperature and incubation period.

LIST OF ABBREVIATIONS

Abbreviation	Meaning
АРНА	American Public Health Association
Cd	Cadmium
CFU	Colony Forming Units
Cu	Copper
EPS	Extracellular Polymeric Substances
FAO	Food and Agriculture Organization
MDA	Malon di aldehyde
MIC	Minimum Inhibitory Concentration
NO	Number
NO ₂	Nitrite
NO ₃	Nitrate
O.D	Optical Density
Pb	Lead
PCR	Polymerase chain reaction
рН	Concentration Of Hydrogen Ions
ROS	Reactive Oxygen Species
TBE	Tris Borate EDETA
ТЕМ	Transmission Electron Microscope

TSA	Tryptic Soya Agar Medium					
WHO	World Health Organization					
Zn	Zinc					

CONTENTS

No	Subject	Page
1. Introduction		1
2. Review Of Liter	ature	4
2.1. Water Pollution	1	4
2.2. Water Pollution	n by Heavy Metal	5
2.3. Aquaculture Fa	rm Pollution by Heavy Metal	6
2.4. Water Quality.		9
2.5. Hazards of Hea	wy Metals	14
2.6. Remediation		22
2.7. Heavy Metals H	Resistance Bacteria	24
2.8. Mechanism of	Heavy Metal Uptake By Bacteria	27
2.9. Factors Affecti	ng Heavy Metal Uptake	36
2.10. Plasmid		47
2.11. Dead Cells		48
2.12. Transmission	Electron Microscope	49
3. Materials and M	Iethods	50
3.1. Sources of Wat	er Sources	50
3.2. Physic-Chemic	al Analysis Of Water Samples	51
3.3. Total Bacterial	Count in Water Samples	52
e	Isolation of Resistance Bacteria to	53
3.5. Molecular Iden	tification Using 16S rRNA	63

3.6. Extraction and Detection of Plasmid	68
3.7. Selection of Heavy Metal Tolerant Bacterial Strains	71
3.8. Detect the Maximum Tolerant Levels for Each	, 1
Metal by The Tested Strains	71
3.9. Biosorption of Pb, Cu And Zn Ions By Dead Cells	
of The Resistant Bacterial Isolates	73
3.10. The Ultra -Structure of Treated and Untreated Metal Examined Isolate by Using Transmission Electron Microscope	73
3.11. Statistical analysis	75
4. EXPERMENTAL RESULTS	
4.1. Physical and Chemical Analysis of Water Samples4.2. Detection Of Heavy Metals In Collected Water	76
Samples	77
4.3. Bacterial Count	81
4.4. Isolation and Identification of Heavy Metal Resistant Bacteria.	
	82
4.5. Molecular Conformation for the Selected Strains Using PCR	
	84
4.6. Effect of Heavy Metals Concentration on Bacterial Growth	
G10 // ul	85

4.7. Effect of culture condition on <i>Bacillus</i> . Subtilis N_1	
and <i>Psdeumonas</i> . <i>fluorescens</i> N_2 growth and uptake of	
Pb^{+2} , Cd^{+2} and Cu^{+2} ions	01
	91
4.8. Effect of Plasmid detection	120
4.9. Biosorption of pb^{+2} , Cd^{+2} and Cu^{+2} ions by dead	
cells of <i>B</i> subtilis N1 and <i>Ps</i> fluorescens N_2 at different	
incubation times at 30°C and pH7	121
4.10. Effect of Pb^{+2} ions uptake on ultrastructure <i>B</i> .	
subtilis N ₁	126
5.Disscution	128
6. Summary	145
7. References	150
8. Arabic Summary	1

LIST OF TABLES

No.	Subject	Page
1	Water samples and its pollution resources	51
2	Water quality of different water sources	78
3	Contents of heavy metals ions in different water	
	sources (Fish farms water)	80
4	Total bacterial count in the different water samples	81
5	Morphological characteristics and physiological tests	
	used for identification of the strain isolates from	
	waste water samples	83
6	Effect of Pb^{+2} concentrations on <i>B. Subtilis</i> N_1	07
-	growth.	87
7	Effect of Pb^{+2} concentrations on <i>Ps. fluorescens</i> N_2 growth	88
8	Effect of Cd^{+2} concentrations on <i>B. subtilis</i> N ₁ growth	89
0 9	Effect of Cd ⁺² concentrations on <i>Ps. fluorescens</i> N_2	07
9	growth	90
10	Effect of Cu^{+2} concentrations on <i>B. subtilis</i> N ₁	
-	growth	92
11	Effect of Cv^{+2} concentrations on D_{-} (homeone N	
11	Effect of Cu ⁺² concentrations on <i>Ps. fluorescens</i> N ₂ growth	93
12	Effect of different incubation period (days) on	
	Bacillus subtilis N_1 growth and uptake of Pb^{+2} at	
	30°C and pH7	94

13	Effect of different incubation period (days) on the growth of <i>Ps. fluorescens</i> N_2 and uptake of Pb ⁺² at 30°C and pH7	95
14	Effect of different incubation period (days) on <i>B</i> . subtilis N_1 growth and Cd^{+2} uptake at 25°C and pH7.	97
15	Effect of different incubation period (days) on <i>ps. fluorescens</i> N_2 growth and Cd ⁺² uptake of at 30°C and pH8	98
16	Effect of different incubation period (days) on <i>B</i> . subtilis N1 growth and Cu^{+2} uptake at 30°C and pH8	100
17	Effect of different incubation period (days) on <i>ps</i> . <i>fluorescens</i> N_2 growth and Cu^{+2} uptake of at 30°C and pH7	101
18	Effect of different incubation temperature (°C) on the <i>B. subtilis</i> N_1 growth and Pb ⁺² uptake of at pH ₇ and incubated for 24 h	103
19	Effect of different incubation temperature (°C) on <i>ps</i> . <i>fluorescens</i> N_2 growth and Pb^{+2} uptake at pH_7 and incubated for 24 h	104
20	subtilis N_1 growth and Cd^{+2} uptake for 96 hrs	10.6
21	incubation periods and at pH 7 Effect of different incubation temperature (°C) on <i>ps</i> .	106
21	<i>fluorescens</i> N_2 growth and Cd ⁺² uptake at pH8 and	
	incubated for 96 h	107
		107

22	Effect of different incubation temperature (°C) on <i>B</i> . <i>subtilis</i> growth and Cu^{+2} uptake of at pH8 and incubated for 72 h	109
23	Effect of different incubation temperature (°C) on <i>ps. fluorescence</i> N2 growth and Cu ⁺² uptake at pH 7 and incubated for 96 h	110
24	Effect of different pH values on <i>B. subtilis</i> N_1 growth and uptake of Pb ⁺² ions incubated for 24 h and 30 °C	112
25	Effect of different pH values on <i>ps. fluorescens</i> N_2 growth and uptake of Pb ⁺² at 30 °C and incubated for 24 h	113
26	Effect of different pH values on the growth of <i>B</i> . subtilis N_1 and uptake of Cd ⁺² ions by this bacteria at certain concentration at 25 (°C)	
27	Effect of different pH values on the growth of <i>ps.</i> <i>fluorescens</i> N2 and uptake of Cd^{+2} by this bacterium isolate at 30° C and incubated for 96 h	116
28	Effect of different pH values on the growth 0f <i>B</i> . <i>subtilis</i> N_1 and uptake of Cu ⁺² by this bacteria at certain concentration at 30 °C and incubated for 72 h.	118
29	Effect of different pH values on the growth of <i>ps. fluorescens</i> N_2 and uptake of Cu^{+2} at 30°C and incubated for 96 h	119
30	Lead uptake by dead <i>B. subtilis</i> N_1 and <i>Ps. Fluorescens</i> N different contact period minutes	119

- 31 Cadmium uptake by dead *B. subtilis* N_1 and *Ps. fluorescens* N_2 after different contact times minutes... 123
- 32 Cupper uptake by dead *B. subtilis* N_1 and *Ps. fluorescens* N_2 after different contact times minutes .. 125

LIST OF FIGURES

No.

Subject

Page

1	Show the pand of 16sRNA gene of <i>B. subtilis</i> N_1 using PCR 1- <i>B. Subtilis</i> gave pase bear at 595. 2- Negative sample 3-Positive samples 4- 100 to 600 (Marker) Show 16SRNA gene of <i>Ps. fluorescens</i> N_2 appears on	84
	agarous gel electrophoresis to give pand at 850 bp (1)	
	examined sample. (2) Negative sample, (3) Positive	
	sample (4) Marker from 100 to 1000 bp	85
3	Effect of Pb^{+2} concentrations on <i>B. Subtilis</i> N ₁	
	growth	87
4	Effect of Pb^{+2} concentrations on <i>Ps. fluorescens</i> N ₂	
	growth	88
5	Effect of Cd^{+2} concentrations on <i>B. subtilis</i> N ₁ growth	89
6	Effect of Cd^{+2} concentrations on <i>Ps. fluorescens</i> N ₂ growth	90
7	Effect of Cu^{+2} concentrations on <i>B. subtilis</i> N ₁	
	growth	92
8	Effect of Cu ⁺² concentrations on <i>Ps. fluorescens</i> N ₂	
	growth	93
9	Effect of different incubation period (days) on <i>B</i> . subtilis N_1 growth and uptake of Pb ⁺² at 30°C and	
	pH7	94

10	Effect of different incubation period (days) on <i>ps.</i> <i>fluorescens</i> N_2 growth and uptake of Pb ⁺² ions at 30°C and pH7	95
11	Effect of different incubation period (days) on <i>B</i> . subtilis N_1 growth and Cd^{+2} uptake at 25°C and pH7.	97
12	Effect of different incubation period (days) on <i>ps. fluorescens</i> N_2 growth and Cd ⁺² uptake of at 30°C and pH8.	98
13	Effect of different incubation period (days) on <i>B</i> . subtilis N1 growth and Cu^{+2} uptake at 30°C and pH8	100
14	Effect of different incubation period (days) on <i>ps. fluorescens</i> N_2 growth and Cu^{+2} uptake of at 30°C and pH7	101
15	Effect of different incubation temperature (°C) on the <i>B. subtilis</i> N_1 growth and Pb ⁺² uptake of at pH ₇ and incubated for 24 h	103
16	Effect of different incubation temperature (°C) on <i>ps. fluorescens</i> N_2 growth and Pb ⁺² uptake at pH7 and incubated for 24 h	104
17	Effect of different incubation temperature (°C) on <i>B</i> . subtilis N_1 growth and Cd^{+2} uptake for 96 hr incubation periods and at pH 7	106
18	Effect of different incubation temperature (°C) on <i>ps.</i> <i>fluorescens</i> N_2 growth and Cd ⁺² uptake at pH8 and	

	incubated for 96 hr	107
19	Effect of different incubation temperature (°C) on <i>B</i> . <i>subtilis</i> growth and Cu^{+2} uptake of at pH8 and incubated for 72 hr.	109
20	Effect of different incubation temperature (°C) on <i>ps. fluorescence</i> N2 growth and Cu^{+2} uptake at pH7 and incubated for 96 hr	110
21	Effect of different pH values on <i>B. subtilis</i> N_1 growth and uptake of Pb ⁺² ions incubated for 24 h and 30 °C	112
22	Effect of different pH values on <i>ps. fluorescens</i> N_2 growth and uptake of Pb ⁺² at 30 °C and incubated for 24 hr	113
23	Effect of different pH values on the growth of <i>B</i> . subtilis N_1 and uptake of Cd ⁺² ions by this bacteria at certain concentration at 25 (°C)	115
24	Effect of different pH values on the growth of <i>ps</i> . <i>fluorescens</i> N2 and uptake of Cd^{+2} by this bacterium isolate at 30° C and incubated for 96 h	116
25	Effect of different pH values on the growth Of <i>B</i> . subtilis N_1 and uptake of Cu^{+2} by this bacteria at certain concentration at 30 °C and incubated for 72 hr	118
26	Effect of different pH values on the growth of <i>ps. fluorescens</i> N_2 and uptake of Cu ⁺² at 30°C and	
27	incubated for 96 hr Plasmid detection of <i>B. subtilis N1</i> and <i>ps.</i>	119 120
- 1	i asima accorton of <i>D</i> , submis 111 and <i>p</i> s,	120

flи	iores	cens	N^2	2	••••	•••	• • • •	••••	 ••••	••••	• • • •	••••	 •
_		-											

28	Lead uptake by dead B. subtilis N_1 and Ps. Fluorescens	
	V_2 at different contact period minutes 12	22

- 29 Cadmium uptake by dead *B. subtilis* N_1 and *Ps. fluorescens* N_2 after different contact times minutes. 124
- 30 Cupper uptake by dead *B. subtilis* N_1 and *Ps. fluorescens* N_2 after different contact times minutes 125

LIST OF PHOTOS

No.

Subject Page lead resistant mechanisms operational in bacteria 1 38 Different views of non-treated cells of B. subtilius N_1 2 transmission electron microscope with magnification 160000×4000×17 126 Different views of Pb^{+2} treated cells of *B. subtilius* N_1 3 transmission electron microscope with magnification 160000×4000×17 127