

Faculty of Veterinary Medicine Department Of Virology

A Trial for Preparation of Mucosal Vaccine for Foot and Mouth Disease Virus

A Thesis Submitted By

Manar Essam Mohamed Khalifa

(B.V.SC., Cairo University (2012) For The Degree Of M.V.Sc. (Virology)

Under Supervision of

Prof .Dr. Hussein Ali Hussein Ahmed

Professor of Virology

Faculty of Veterinary Medicine, Cairo University

Dr. Ayman Hany El Deeb

Prof. Dr. Sayed Zeidan

Lecturer at Virology Department Faculty of Veterinary Medicine Cairo University Chief Researcher at veterinary serum and vaccine research institute

Cairo University

Faculty of Veterinary Medicine

Department of Virology

Name: ManarEssam Mohamed Khalifa

Nationality: Egyptian

Date and place of birth: 1/10/1990, Egypt

Under Supervision of:

Prof. Dr. Hussein AlyHussein. Professor of Virology, Faculty of Veterinary Medicine, Cairo University.

Dr. Ayman.H.El Deeb.Lecturer at Virology department, Faculty of Veterinary Medicine ,Cairo University.

Prof. Dr. SayedZeidan .Chief Researcher at Veterinary serum and vaccine research institute.

Thesis Title: A trial for preparation of mucosal vaccine for Foot and Mouth Disease Virus.

ABSTRACT

Mucosal vaccines for foot and mouth disease virus are expected to block viral entry, thus, limiting (FMDV) spread in the cattle herd. Immunization strategy based on both mucosal and systemic immunity platforms is greatly needed to control FMD. In this study, several immunization strategies, using two foot and mouth disease vaccine formulations, including Montanide ISA 206 oil - based FMD inactivated vaccine and Montanide IMS 1313 VG N PR - based concentrated semi-purified FMD mucosal vaccine were applied. Results of intra nasal immunization with the prepared FMD mucosal vaccine given, once or twice, induced IgA levels in both nasal and salivary secretions besides a high response of lymphocyte proliferation with protection levels reaching 20% and 40%, respectively, in a challenge trial in cattle. Prime boost strategy based on the administration of mucosal vaccine followed by inactivated vaccine appeared to be the most potent strategy, achieving 100% protection against an FMDV challenge. Indeed, the study reports the efficacy of the prepared IMS 1313 FMD mucosal vaccine and the possible use of this vaccine in the context of different vaccination strategies to control FMDV.

Keywords: FMDV; mucosal vaccine; immunization strategy; prime boost.

Contents

Title

Page

1. Introduction	1
2. Review of literature	4
2.1. Foot and mouth disease	4
2.1.1. FMDV structure	7
2.1.2 .History of FMD vaccines	7
2.1.3. Inactivated FMD vaccines	9
2.1.4. Live attenuated FMD vaccines	10
2.1.5. Molecular based vaccines	11
2.1.6. Adjuvants of FMD vaccines	14
2.1.7. Immunity to FMD vaccines	16
2.1.8. FMD mucosal vaccination	17
2.1.8.1. Mucosal immune system	17
2.1.8.2. Mucosal immunization routes	20
2.1.8.3. Mechanism of antigen uptake and presentation in mucosal sites	21
2.1.8.4. Requirements for successful mucosal immunization in cattle	24
2.1.8.5. Adjuvants for mucosal vaccines	24
2.1.8.6. Micro emulsion	28
2.1.8.7. Mucosal FMD vaccines	28
2.1.9. Evaluation of the prepared FMD vaccines	30
3. Materials&Methods	31
3.1. Propagation of FMDV	33

3.2. FMDV concentration	36
3.3.Titration of FMDV	37
3.4. Inactivation of FMDV	38
3.5. Estimation of 146S content in the prepared FMD antigens and collection of 146S	39
fractions	
3.6. Ultrafiltration of FMDV	42
3.7. DOT-ELISA	43
3.8. Mucosal FMD vaccine preparation	45
3.9. Preparation of FMD oil based vaccine	46
3.10. Sterility test for the prepared vaccines	47
3.11. Administration of the prepared vaccines	48
3.12. Evaluation of lymphocyte proliferation (MTT assay) in experimental	49
calves	
3.13. Evaluation of IgA levels in serum, nasal and salivary secretions of experimental	53
calves	
3.14. Evaluation of serum neutralizing antibodies in experimental calves by	55
VNT	
3.15. Evaluation of the prepared vaccines by challenge test	57
4. Results	59
5. Discussion	98
6. Summary	110
7. References	113
10. Arabic Summary	1

LIST OF TABLES

Table	Title	Page
1	Titration of FMDV on BHK-21 cells	60
2	The 146S antigenic content of FMDV antigens expressed in µg/ml	61
3	Lymphocyte proliferation assay in experimental calves using MTT assay expressed in PI (Mean ± SD)	66
4	Serum IgA levels in experimental calves using Recombine Virus Bovine Anti-FMD VP1 IgA ELISA expressed as corrected O.D readings	71
5	Nasal IgA levels in experimental calves using Recombine Virus Bovine Anti-FMD VP1 IgA ELISA expressed as corrected O.D readings	75
6	Salivary IgA levels in experimental calves using Recombine Virus Bovine Anti-FMD VP1 IgA ELISA expressed as corrected O.D readings	79
7	Serum, nasal and saliva IgA levels in experimental calves at 3,7,10 and 18 days post vaccination using Recombine Virus Bovine Anti-FMD VP1 IgA ELISA expressed as corrected O.D readings	82

8	Serum, nasal and saliva IgA levels in experimental calves at 24, 28 and 31 days post vaccination using Recombine Virus Bovine Anti-FMD VP1 IgA ELISA expressed as corrected O.D readings	83
9	Serum, nasal and saliva IgA levels in experimental calves at 24, 38 and 45 days post vaccination using Recombine Virus Bovine Anti-FMD VP1 IgA ELISA expressed as corrected O.D readings	84
10	Serum neutralizing antibody titers in experimental calves using VNT against FMD virus type O Pan-Asia/2012 expressed as mean neutralizing antibody titers (log ₁₀)	90
11	Protection % after challenge test for gp.1, gp.2 and the control unvaccinated calves	94
12	Protection % after challenge test for gp.3, gp.4 and the control unvaccinated calves	95

LIST OF FIGURES

Figure	Title	Page
1	Nasal associated lymphoid structure	19
2	Microfold (M) cell structure	20
3	Immunoglobulin A structure (sIgA)	23
4	Normal and infected BHK cells after FMDV inoculation	59
5	UV scanning of FMDV fractions following Sucrose Density Gradient centrifugation for 146S quantification expressed in µg/ml	62
6	DOT ELISA for detection of FMDV antigens in harvest	63
7	Lymphocyte proliferation levels in experimental calves using MTT assay expressed in Proliferative index (mean± SD)	68
8	Standard curve of the positive control of Recombine Virus Bovine Anti-FMD VP1 IgA ELISA expressed in A450	69
9	Serum IgA levels in experimental calves using Recombine Virus Bovine Anti-FMD VP1 IgA ELISA expressed as corrected O.D readings	73

10	Nasal IgA levels in experimental calves using Recombine Virus Bovine Anti-FMD VP1 IgA ELISA expressed as corrected O.D readings	77
11	Salivary IgA levels in experimental calves using Recombine Virus Bovine Anti-FMD VP1 IgA ELISA expressed as corrected O.D readings	81
12	Serum, nasal and saliva IgA levels in experimental calves at 3,7,10 and 18 days post vaccination using Recombine Virus Bovine Anti-FMD VP1 IgA ELISA expressed as corrected O.D readings	86
13	Serum, nasal and saliva IgA levels in experimental calves at 24, 28 and 31 days post vaccination using Recombine Virus Bovine Anti-FMD VP1 IgA ELISA expressed as corrected O.D readings	87
14	Serum, nasal and saliva IgA levels in experimental calves at 24, 38 and 45 days post vaccination using Recombine Virus Bovine Anti-FMD VP1 IgA ELISA expressed as corrected O.D readings	88
15	Serum neutralizing antibody titers in experimental calves using VNT against FMD virus type O Pan-Asia/2012 expressed as mean neutralizing antibody titers (log ₁₀)	92

16	The vesicular lesions on tongue and foot of the positive control calves following challenge test	96
17	Protection % after challenge test in experimental calves	97

List of Abbreviation

AEI	Acetyl ethylene imine
APCS	Antigen presenting cells
BEI.	binary ethylene imine
BHK 21	Baby hamster kidney cells
BID ₅₀	Bovine infective dose fifity
CPE.	Cyto-pathic effect
DNA	Deoxyribonucleic acid.
DDW	Double Distilled water
ELISA	Enzyme linked immunosorbent assay.
FMDV	Foot and mouth disease virus
IL	Interleukine
IRES	Internal ribosome entry site
IgA	Immunoglobulin A
IgG	Immunoglobulin G
I.U	International unit
I/N	Intranasal.
KDa	Kilo dslton
L pro	Leader protein
MALT	Mucosal associated lymphoid tissue
MEM	Minimal essential medium
M cells	Micro-fold cells
Min	Minutes
μl	Micro liter.
mg	miligram

mRNA	Messenger RNA.
NALT	Nasopharynx Associated lymphoid tissue
Nm	Nanometer
NSP	Non structural proteins
OIE	Office des epizootic international (World Animal health organization).
O.D	Optical density
PBS	Phosphate buffer saline
PEG	Poly etyhylene glycol
рН	Hydrogen Ion Concentration.
РВМС	Peripheral blood mononuclear cells
PD ₅₀	Protective dose fifty
PI	Proliferative indec
RNA	Ribonucleic acid.
RPM	Round per Minute.
RPMI	Roswer park Memorial Institute
S	Svedberg unit
SD	Standard deviation
S/C	Subcutaneous.
SNT	serum neutralization test
SS	Single stranded.
TCID ₅₀	Tiissue culture infective dose fifty
UTR	Un translated region
VNT	Virus Neutralization Test
VP	Viral protein

VSVRI	Veterinary Serum and Vaccine Research Institute
TIRS	Tol like receptors
UV	Ultraviolet