

Effects of camel whey protein supplementation on some immune organs integrity in heatstressed male mice

A THESIS

Submitted to the Zoology Department, Faculty of Science, Assiut University

For

The Partial Fulfillment of The Degree of M. Sc. in Zoology (Cell biology)

By

Nancy Karamallah Ramadan Ahmed

B.Sc. Zoology, Assiut University

Supervised by

Prof. Gamal Gamal Badr

Prof. Hanem Saad Abdel-Tawab

Prof. of Immunology, Zoology Department, Faculty of Science, Assiut University Prof. Histology and Cell Biology, Zoology Department, Faculty of Science, Assiut University

Dr. Samia Fawzy Ahmed

Researcher in Agriculture Research Center, Animal Health Research Institute, Assiut branch

Zoology Department Faculty of Science, Assuit University, Egypt 2019

- Aim of the work(1)	
- Intro	oduction(2)
- Liter	cature Review(7)
•	2.1. Oxidative stress and Free Radicals
٠	2.3. Immune system and cytokines(20)
٠	2.4. Inflammatory mediators(22)
٠	2.5. Heat Shock Protein (HSP)(24)
٠	2.6. Nuclear Factor Kappa (NF-KB) pathway(25)
٠	2.7. Apoptosis
•	2.8. Testes(39)
- Mate	erials and method(45)
٠	3.1. Chemicals and reagents(45)
•	3.2. Animals(46)
•	3.3. Preparation of camel whey protein(46)
•	3.4. Induction of HS and dose of CWP(47)
٠	3.5. Body weight and food and water intake(48)
٠	3.6. Collection of samples(48)
•	3.7. Hematological determination(49)
٠	3.8. ELISA assay for the plasma cytokine profile(49)
٠	3.9. Measurement of sperm motility(53)
٠	3.10. Histopathological studies(54)
٠	3.11. Western blots Analysis(61)
٠	3.12. Apoptosis detection using Flow Cytometry(72)
•	3.13. Statistical analysis(73)
- Expe	erimental Results
•	4.1. Effect of HS and CWP on body and testis weights(74)
•	4.2. Effect of HS and CWP on food and water intake(76)
•	4.3. Effect of HS and CWP on haematological parameters(77)
•	4.4. Effect of HS and CWP on inflammation in plasma and
	PBMC lysate(81)
•	4.5. Effect of HS and CWP on oxidative stress and
	antioxidants in plasma and testis(85)

List of Contents

• 4.6. Effect of HS and CWP on NF-KB pathway:	.(94)
• 4.7. Effect of HS and CWP on apoptosis	(97)
• 4.8. Effect of HS and CWP on some immune organs	.(110)
• 4.9. Effect of HS and CWP on HSP	.(139)
• 4.10. Effect of HS and CWP on testis	.(143)
- Discussion - Conclusion	(161) (181) (185)
- References	(188)

- Arabic summary

List of Tables

No. of Table	No. of Page
Table 1: Statistical analysis shows the differences among groups regarding haematological parameters	78
Table 2 : Statistical analysis shows thedifferences among groups regardingsperm motility.	146
Table 3: Statistical analysis shows thedifferences among groups regarding allmeasured numerical parameters	157

No. of Figure	No. of page
Figure 1: Diagram of CWP health benefits	18
Figure 2: Experimental design and doses	48
Figure 3: Average body weights during the experiment.	74
Figure 4: Testes weight and testis/body weight ratio.	75
Figure 5: Average food and water consumption.	77
Figure 6: Shows the counts of differential WBCs, HCT and HGB in control, HS and HS treated mice with CWP.	79
Figure 7: Shows some haematological parameters in control, HS and HS treated mice with CWP.	80
Figure 8: Plasma level of IL-6.	81
Figure 9 : Plasma level of IL-1β.	82
Figure 10: Plasma level of TNF-α.	83
Figure 11: Plasma level of CRP.	84
Figure12: Shows the expression of ATF-3 of control, HS and HS treated mice with CWP.	85
Figure 13: Plasma level of ROS.	86
Figure 14: Testis level of ROS.	87
Figure 15: Plasma level of TAC.	88
Figure 16: Testis level of catalase.	89
Figure 17: Testis level of MnSOD.	90
Figure 18: Testis level of GSH.	91

Figure 19: Testis level of GSH-Px.	92
Figure 20: Shows expression of Nrf2 in testes of control, HS and HS treated mice with CWP.	93
Figure 21: Shows phosphorylation of AKT of control, HS and HS treated mice with CWP.	95
Figure 22: Shows phosphorylation of IκB-α of control, HS and HS treated mice with CWP.	97
Figure 23: Shows % of apoptotic lymphocytes of control, HS and HS treated mice with CWP.	99
Figure 24: Plasma level of caspase 3.	100
Figure 25: Plasma level of caspase 9.	101
Figure 26: Shows phosphorylation of cytochrome C of control, HS and HS treated mice with CWP.	102
Figure 27: Shows expression of P53 in testes of control, HS and HS treated mice with CWP.	103
Figure 28: Shows expression of Bax and Bim of control, HS and HS treated mice with CWP.	105
Figure 29: Shows expression of Survivin of control, HS and HS treated mice with CWP.	107
Figure 30: Shows expression of Bcl-2 of control, HS and HS treated mice with CWP.	108
Figure 31 : Shows expression of Bcl-2 in testes of control, HS and HS treated mice with CWP.	109
Figure32: Plasma level of IL -2.	110
Figure 33: Plasma level of IL-4	111
Figure34: Photomicrograph of bone marrow section from the control mice	112
Figure 35: Photomicrograph of bone marrow section from the HS mice	112

Figure 51: Photomicrograph of section of HS	128
tnymus	
Figure 52: Photomicrograph of thymus section	128
from HS group	
Figure 53: Photomicrograph of thymus section	129
from HS group	
Figure 54: Photomicrograph of section of	129
HS+CWP thymus	
Figure 55: Photomicrograph of thymus sections	130
from the control, HS, and HS+CWP mice were	
immunohistochemical stained with anti-CD3	
Figure 56: Photomicrograph of section of control	132
spleen	
Figure 57: Photomicrograph of section of HS	133
spleen	
Figure 58: Photomicrograph of section of HS	133
spleen	
Figure 59: Photomicrograph of section of HS	134
spleen	
Figure 60: Photomicrograph of section of HS	134
spleen	
Figure 61: Photomicrograph of section of HS	135
spleen	
Figure 62: Photomicrograph of section of	136
CWP+HS spleen	
Figure 63: Photomicrograph of spleen sections	137
from the control, HS, and HS+CWP mice were	
immunohistochemical stained with anti-CD3	
Figure 64: Photomicrograph of spleen sections	138
from the control, HS, and HS+CWP mice were	
immunohistochemical stained with anti-CD20	

Figure 36: Photomicrograph of bone marrow	113
section from fits group	
Figure 37: Photomicrograph of bone marrow	113
section from the HS+CWP mice	
Figure 38: A semithin section of bone marrow	114
from control mice	
Figure 39: A semithin section of bone marrow	115
from HS mice	
Figure 40: A semithin section of bone marrow	115
from HS+CWP mice	
Figure 41: Electron micrograph of bone marrow	118
of control mice	
Figure 42: Electron micrograph of bone marrow	119
of control mice	
Figure 43: Electron micrograph of bone marrow	120
of heat stress (HS) mice	
Figure 44: Electron micrograph of bone marrow	121
of (HS) mice	
Figure 45: Electron micrograph of bone marrow	122
of (HS) mice	
Figure 46: Electron micrograph of bone marrow	123
of HS+CWP mice	
Figure 47: Electron micrograph of bone marrow	124
of (HS+CWP) mice	
Figure 48: Electron micrograph of bone marrow	125
of HS+CWP mice	
Figure 49: Electron micrograph of bone marrow	126
of HS+CWP mice	
Figure 50: Photomicrograph of section of control	127
thymus	

Figure 65: Photomicrograph of thymus sections from the control, HS, and HS+CWP mice were immunohistochemical stained with anti-HSP-70	139
Figure 66: Photomicrograph of spleen sections from the control, HS, and HS+CWP mice were immunohistochemical stained with anti-HSP-70	140
Figure 67: Shows expression of HSP-70 of control, HS and HS treated mice with CWP.	141
Figure 68: Shows expression of HSP-90 of control, HS and HS treated mice with CWP.	143
Figure 69: Testis level of testosterone.	144
Figure 70: Testis level of LH.	144
Figure 71: Sperm count mean.	145
Figure 72: Sperm motility.	147
Figure 73: Photomicrograph of section of control testis	148
Figure 74: Photomicrograph of section of HS testis	149
Figure75: Photomicrograph of section of HS testis	149
Figure 76: Photomicrograph of section of HS testis	150
Figure 77: Photomicrograph of section of HS testis	150
Figure 78: Photomicrograph of section of HS+CWP testis	151
Figure 79: Photomicrograph of testis sections from the control, HS, and HS+CWP mice were immunohistochemical stained with anti-YAP	152
Figure 80: Leydig cells number	153

Figure 81: Shows expression of PPAR-γ in testes of control, HS and HS treated mice with CWP.	154
Figure 82: Shows expression of 3β-HSD in testes of control, HS and HS treated mice with CWP.	156
Figure 83: Diagram of different Effects of HS and CWP on the body.	184

Summary

Heat stress occurs when an animal cannot dissipate an adequate quantity of heat, whether it is produced or absorbed by the body, to maintain body thermal balance. This may prompt physiological and behavioral responses, leading to physiological disorders that negatively affect the productive and reproductive performance of farm animals.

In the present study, experimental model of HS, was used to find out the effects of HS on the immune organs and testis, in addition to find out treatment can reduces these effects. The objective of this study is to know the role of CWP to alleviate the harmful effects caused by heat stress in male mice.

Therefore, this study was conducted in order to evaluate the effect of heat stress on the immune and other organs and the role of CWP in the of these negative influences. treatment In this study, 45 male albino mice were purchased from Theodore Bilharz Institute in Cairo were divided into three groups, 15 mice each. The first was used as control and the other two groups were subjected to heat stress temperature of 40.0°C for 2 hr daily for one month; the HS mice in the third group were orally supplemented with CWP (200 mg/kg body weight dissolved in 250 µl distilled water/day for one month) through oral gavage. After the expiration of the treatment, all mice were anesthetized with pentobarbital and dissected for collection of blood samples and organs (spleen, testis, thymus and bone marrow) for biochemical analysis and histological observation.

The study concluded the following results:

1- HS mice showed increase in the levels of pro-inflammatory cytokines (IL-6, IL1 β and TNF- α), CRP, caspase-3 and caspase-9, while other cytokines (IL-2, and IL-4) and testosterone showed decrease in comparison with the control group.

2- Also, HS mice showed increase in ROS in blood and testis while TAC and other antioxidants (GSH, GSHPx, MnSOD and catalase) showed decrease.

3- Additionally, HS mice showed decease in body weight, food consumption, testis weight, sperms count and motility, while increase in water consumption and Leydig cells count.

4- Western blot analysis showed significant increase in the expression of ATF-3, Bax, Bim, cytochrome C, HSP-70, HSP-90, Nrf-2, P53 and 3β -HSD while showed significant decrease in phosphorylation of AKT and I κ B- α , Bcl-2, survivin and PPAR- γ in blood and testis homogenate.

5- Flow cytometry analysis showed an increase in apoptosis percent of lymphocytes.

6- Treatment of HS mice with CWP results in improvement in all the biochemical changes in the blood and testis, with improvement in histological tissue of testis, spleen, thymus and bone marrow. In addition, CWP restored the expression of ATF-3, AKT, I κ B- α , Bax, Bim, Bcl-2, P53, cytochrome C, HSP-70, HSP-90, Nrf-2, P53, survivin, PPAR- γ and 3 β -HSD in blood and testis.

7- Additionally, CWP improved body and testis weight, sperm count and motility, food and water consumption, Leydig cells count, apoptosis in lymphocytes. It also improved ROS, TAC, CRP, caspase-3, caspase-9, testosterone, inflammatory cytokines and antioxidants parameters. 8- Microscopic examination by light microscope and electron microscope revealed pathological changes in HS mice as follows:

- Appearance of incomplete spermatogenesis in testis.
- Shortage in the constituent cells of the blood cells in the BM.
- EM showed degeneration, pyknosis, apoptosis and necrosis of haematopoetic stem cells in BM.
- Immunohistochemical staining showed increase in HSP-70 and YAP expression in lymphocytes and testis respectively.
- Immunohistochemical staining showed aberrant distribution of CD3+ T cells and CD20+ B cells in the thymus and spleen.
- Additionally, pathological alterations were seen such as necrosis, thrombosis, congestion and lymphocytic depletion in the architecture of the lymphoid organs (bone marrow, thymus, and spleen).

9- In conclusion our obtained results find the ability of CWP to reduce the inflammation, oxidative stress, and immune dysfunction due to HS.