LIST OF ABBREVIATIONS

ART	Assistant Reproductive Technology
AtRNA	All trans Retinoic Acid
CEOs	Cumulus Enclosed Oocytes
Cocs	Compact Complex Oocyte Cumulus Cells
CRABP	Cellular Retinoic Acid Binding Protein
СТ	Threshold Cycle
ET	Embryo Transfer
ICM	Inner Cell Mass
IVC	In vitro Culture
IVEP	In vitro Embryo Production
IVF	In vitro Fertilization
IVM	In vitro Maturation
IVP	In vitro Production
MOET	Multiple ovulation Embryo Transfer
mtDNA	Mitochondrial DNA
OS	Oxidative Stress
OSFs	Oocyte Secreted Factors
PI	Propidium Iodide
RA	Retinoic Acid
RAR	Retinoic Acid Receptors
ROS	Reactive Oxygen Species
RXR	Retinoid X Receptors
SO	Super Ovulation
TCN	Total Cell Number
TNF	Tumer Necrosis Factor
ZP	Zona Pellucida

ACKNOWLEDGMENTS

I would like to express my deepest sincere gratitude and appreciation to Dr. SALAH EL-DIN SAYED MOHAMED EL-ASSAL, Professor of Genetics, Fac. Agric., Cairo University, for his keen supervision, valuable suggestions, and continuous encouragement and generously given the experience and guidance. Also I would like to express my deep thanks to Dr. AHMED YEHIA GAD, Associate Professor of Animal Physiology, Faculty of Agriculture, Cairo University, for his collaboration and showing me the practical importance of work study, suggesting the point, enthusiastic help and generously given the experience and guidance.

I am extremely grateful to **Dr. SWIEFY ABD EL-RAHIM** SWIEFY, Professor, Biotechnology department, Animal Production Research Institute, Agriculture Research Center, Giza, Egypt, for his kind supervision, valuable help, instructive criticism and supplying the facilities throughout this work. And call upon God to bestow His mercy TO **DR SWIEFY ABD EL-RAHIM** SWIEFY, Who died before the completion of this study.

I am sincerely thankful to the professional help of all the staff of Biotechnology and Embryology Labs, Cairo University Research Park (CURP), Faculty of Agriculture, Cairo University.

CONTENTS

INTRODUCTION	
REVIEW OF LITERATURE	
1. A brief history of the importance of buffalo	
2. Reproductive problems in buffalo	
3. In vitro embryo production in buffalo	
4. Source of oocytes, oocyte quality and grading of oocyte	S
5. Steps of <i>in vitro</i> embryo production in buffalo	
a. <i>In vitro</i> maturation	
b. In vitro fertilization	
c. In vitro embryo culture	
d. Quality of In vitro embryo produced embryo	
6. Oxidative stress in <i>in vitro</i> embryo production	
a. ROS and free radicals	
b. Source of ROS	
c. Contribution of oocytes	
d. Contribution of medium and supplements in ROS	
e. Effect of reactive oxygen species during IVF	
7. Antioxidants	
a. Vitamin A and retinoid	
b. The effect of (9-cisRA) during in vitro maturation	••••
8. Retinoic acid receptors and gene regulation	
9. Selected genes related to oocyte quality (GDF9 and	
BMP15)	
10. Antioxidant related genes (PRDX1, GPX4, SOD1, CA	T
and HMOX1)	
a. PRDX1	
b. GPX4	
c. SOD1	
d. CAT	
e. HMOX1	••••
11. Mitochondria	
a. What about mitochondrion, mitochondrial genome and i	its
role in cell development and ROS?	
b. Mitochondria in oocyte and embryo	
c. Mitochondria activity	

	MATERIAL AND METHODS	40
1.	Oocyte collection, <i>in vitro</i> maturation and fertilization	40
2.	Expression analysis of antioxidant genes using quantitative	
	real-timPCR (RT-qPCR)	41
	a. RNA isolation and cDNA synthesis	41
	b. Quantitative Real time (RT-qPCR)	42
3.	Intracellular ROS accumulation detection	45
4.	Detection of mitochondrial activity	45
5.	Fluorescence level quantification	46
6.	Statistical Analysis	46
RF	ESULTS AND DISCUSSION	47
1.	In vitro maturation of immature buffalo oocytes using 9-cis	
	retinoic acid in maturation media	47
2.	In vitro fertilization of matured buffalo oocytes in media	
	supplemented with (0, 5 and 50 nM) 9-cis retinoic acid	52
3.	Effect of 9-cis retinoic acid on expression of GDF9 and	
	BMP15 in matured oocytes (genes selected responsible for	
	oocyte quality)	56
4.	Effect of 9-cis retinoic acid on expression of CAT, PRDX1,	
	HMOX1, GPX4 and SOD1 in matured oocytes (genes selected	
	responsible for oxidative stress)	58
5.	Intracellular ROS accumulation detection	63
6.	Detection of mitochondrial activity	65
SU	JMMARY	71
Rŀ	EFERENCES	76
AI	RABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	Summarizes the effect of adding retinoic acid to IVM/IVF/IVC	27
2.	Details of primers used for quantitative real-time PCR.	44
3.	Expansion and polar body appearance rates under different concentrations (0, 5, 50 or 200 nM) of 9-cisRA during <i>in vitro</i> maturation of buffalo oocytes	49
4.	Cleavage rates under different concentrations (0, 5 and 50 nM) of 9-cisRA during <i>in vitro</i> fertilization of buffalo oocytes	54

LIST OF FIGURES

No.	Title	Page
1.	Over view of <i>in vitro</i> embryo production	16
2.	Endogenous sources of oxidative stress in ART	19
3.	Expansion rates under different concentrations (0, 5, 50 or 200 nM) of 9-cisRA during <i>in vitro</i> maturation of buffalo oocyte.	48
4.	Polar body appearance rates under different concentrations (0, 5, 50 or 200 nM) of 9-cisRA during <i>in vitro</i> maturation of buffalo oocytes	48
5.	Cleavage rates under different concentrations (0, 5 and 50 nM) of 9-cisRA during <i>in vitro</i> fertilization of buffalo oocytes.	53
6.	Expression levels of genes related to the oocyte quality (GDF9; Growth differentiation factor-9) and (BMP15; Bone morphogenetic factor 15)	57
7.	Expression levels of genes related to oxidative stress (GPX4; Glutathione peroxidase 4), (HMOX1; Heme oxygenase1), (PRDX1; peroxiredoxin 1), (CAT; catalase), and (SOD1; superoxide dismutase 1)	60
8.	Reactive oxygen species levels in <i>in-vitro</i> buffalo oocytes maturation in medium supplemented with (a) 0 nM 9-cis retinoic acid, (b) 5 nM 9-cis retinoic acid, (c) 50 nM 9-cis retinoic acid and (d) 200 nM 9-cis retinoic acid.	64

Name of Candidate:Said EL- Hussein Said MahmoudDegree:M.Sc.Title of Thesis:Molecular Studies on Oocyte Maturation in Egyptian
Buffalo Using Different MediaEgyptianSupervisors:Dr. Salah EL-Din Sayed Mohamed EL-Assal
Dr. Ahmed Yehia GadDr. Ahmed Yehia Gad

Dr. Swiefv Abd El-Rahim Swiefv (late)

Department: Genetics

Approval: / /

ABSTRACT

Retinoic acid, vitamin A metabolite, plays a role in oocyte development and maturation in different ways including gene expression alteration and/or prohibiting oxidative stress. The objective of this study was to examine the effect of 9-cis-retinoic acid (9-cisRA) on the quality and maturation rate of buffalo oocytes. Cumulus oocyte complexes (COCs, n =460) were collected from ovaries of slaughtered buffalos. Varying concentrations of 9-cisRA (0, 5, 50, and 200 nM) were added to the maturation medium, and the following parameters were analyzed: (i) maturation and cleavage rates, (ii) mitochondrial activity and reactive oxygen species (ROS) levels, (iii) expression level of antioxidant-related genes (PRDX1, SOD1, CAT, HOMX1, and GPX4) using RT-qPCR. (iv) expression level of genes related to oocyte quality (GDF9,BMP15) Maturation rate was significantly improved in 5 nM 9-cisRA oocyte group (95.8%, P < .05) compared to control and other treatment groups (86.7% incontrol group). The same oocyte group exhibited significantly higher mitochondrial membrane potential activity and lower ROS accumulation level compared to other treatment groups. Antioxidant-related genes were upregulated in oocytes matured with 5 or 50 nM 9-cisRA compared to control and 200 nM 9-cisRA groups. In contrast, 200 nM of 9-cisRA showed a clear down-regulation for antioxidant-related genes except for PRDX1. In conclusion, supplementation of 9-cisRA with a lower concentration (5 nM) to the buffalo oocytes maturation media promotes maturation rate through a protection mechanism that maintains adequate levels of antioxidant-related transcripts and improves mitochondrial activity. However, 9- cisRA has no significant effect on the cleavage rate of the treated oocytes.

Key words: Antioxidant genes, Cleavage rate, Follicular fluid, Mitochondrial activity Reactive oxygen species.