Contents

Subject	Page
ACKNOWLEDGEMENTS	i
LIST OF CONTENTS	ii
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF PLATES	xi
LIST OF MICROGRAPHS	xii
LIST OF ABBREVIATIONS	Xiv
AIM OF THE PRESENT WORK	
INTRODUCTION	1
1) Ecological studies of whitefly Bemisia tabaci (Genn.)	
infesting cantaloupe and their natural enemies:	1
1.1- Population studies of <i>Bemisia tabaci</i> :	6
2) Physiological studies of <i>B. tabaci</i> (Genn.)	9
2.1-Carbohydrates	10
2.2- α-amylase	11
2.3-Lipids	13
2.4- Lipase	14
2.5- Protein	15
3) Morphological characters of whitefly, <i>B. tabaci</i>	16
Mechanoreceptors and auditory organs	23
MATERIALS AND METHODS	
1) Ecological studies	25
1.1- General survey	25

1.2- Leaf sampling	25
1.3- Sweep-net technique	25
2- Population of whitefly and their natural enemies	26
3- Effect of some agricultural practices on <i>B. tabaci</i>	27
3.1- Effect of cantaloupe varieties	27
3.2- Effect of nitrogen fertilization rates	28
2) Physiological studies	28
Samples collection	28
1-Total Protein assay	29
2-Total lipids assay	30
3-Total carbohydrate assay	30
1- Alpha amylase assay	31
2- Lipase assay	32
3- Statistical analysis	32
3) Morphological studies	33
Results	
1) Ecological studies	34
1.1-Survey of pests and their associated predators	
recorded on cantaloupe plants at Assiut	34
1.1.1- Pests	34
1.1.2- Predators	35
1.2- Dominance and abundance degrees of sucking pests	
and the associated predators on cantaloupe plants	37
1.3- Seasonal abundance of the whitefly, B. tabaci in	
cantaloupe:	42
1.4- Multi-correlation analysis of some factors affecting	
the infestation of cantaloupe by B. tabaci	50

density of the B. tabaci infesting cantaloupe during	
2014 and 2015 growing seasons.	
1.5.1- Effect of cantaloupe varieties	53
1.5.2- Effect of Nitrogen fertilization rate	57
1.5.3- The interaction between cantaloupe varieties	
and N-fertilization	65
2) Physiological studies	
2.1- Total protein concentration	66
2.2 Total carbohydrate concentration	66
2.3- Total lipid concentration	67
2.4- Alpha- amylase activity	67
2.5- Lipase activity	68
3) Morphological studies	
Ultra-structure and morphological studies of whitefly	
(B.tabaci):	73
General description of whitefly	73
3.1- Antenna of whitefly	73
Morphometric differences between antennae of female	
and male of <i>B. tabaci</i> fed on cantaloupe plants:	74
Types of sensilla	74
Morphological description of sensilla scattered on the	
antenna of <i>B. tabaci</i> fed on the cantaloupe plants:	75
3.2- Compound eyes:	78
3.3- Legs	78
3.4- Genitalia of <i>B. tabaci</i>	79
a- Female genitalium	79

b- Male genitalium	80
3.5- Morphological description of Wings of <i>B. tabaci</i>	81
3.6- Nymphal stage	82
3.7- Molting	82
3.8- Wax particles	83
Discussion	
1-Ecological studies	129
2- Physiological studies	132
3- Ultrastructure studies	135
Conclusion	153
Summary	155
REFERENCES	160
الملخص العربي Arabic summary	-

List of Tables

No	Table	Page
1	Cultural practices applied on cantaloupe plants on Assiut,	
	during 2014 and 2015 seasons.	28
2	A partial taxonomic list of pests and the associated	
	predators inhabiting cantaloupe plants during 2014 and	
	2015 growing seasons, Assiut.	36
3	Dominance and abundance degrees of the pests and	
	associated predators inhabiting cantaloupe during 2014	
	season, Assiut.	39
4	Dominance and abundance degrees of the pests and	
	associated predators inhabiting cantaloupe during 2015	
	season, Assiut.	41
5	Population (Mean number/one leaf) of B. tabaci on	
	cantaloupe plants in relation to abiotic and biotic factors	
	during 2014 season, Assiut.	46
6	Population (mean number/one leaf) of B. tabaci on	
	cantaloupe plants in relation to abiotic and biotic factors	
	during 2015 season, Assiut.	48
7	Multi-factors affecting fluctuation of <i>B. tabaci</i> infesting	
	cantaloupe plants through 2014-2015 growing seasons.	53
8	Mean number of <i>B. tabaci</i> (mean No./Leaf) infesting	
	cantaloupe plants as affected by cantaloupe cultivars during	
	2014 growing season, Assiut.	55
9	Mean number of <i>B. tabaci</i> (mean No./leaf) infesting	
	cantaloupe plants as affected by cantaloupe cultivars during	56

	2015 growing season, Assiut.	
10	Susceptibility degrees of cantaloupe varieties to B. tabaci	
	infestation during 2014 and 2015 growing seasons, Assiut.	59
11	Mean number of B. tabaci infesting cantaloupe plants as	
	affected by different levels of N-fertilizations during 2014	
	growing season, Assiut.	60
12	Mean number of B. tabaci infesting cantaloupe plants as	
	affected by different levels of N-fertilizations during 2015	
	growing season, Assiut.	61
13	Mean number of B. tabaci on cantaloupe as affected by N-	
	fertilization and cantaloupe varieties during 2014 growing	
	season.	63
14	Mean number of B. tabaci on cantaloupe cultivars, as	
	affected by N-fertilization during 2015 cantaloupe growing	
	season.	
15	Biochemical results of fourth instar of <i>B. tabaci</i> fed on three	
	different cultivars of cantaloupe.	
16	Measurments of different parts of antenna of <i>B. tabaci</i> .	83
17	Different measurements of different sensilla of male and	
	female antenna of <i>B.tabaci</i> .	90
18	Diameter of the compound eyes, length of hind wings and	
	length of tarsus of male and female of B. tabaci fed on	
	cantaloupe	
19	Measurements of different sensilla of male and female	
	tarsus of <i>B.tabaci</i> .	104
20	Measurements of different sensilla of male and female	
	genitalia of <i>B.tabaci</i> .	110

21	Measurements of different sensilla of the male and female	
	wings of <i>B.tabaci</i> .	118

List o	of Fig	ures
--------	--------	------

No	Figure	
1	Dominance and abundance degrees of the pests and the	
	associated predators inhabiting cantaloupe plants during	
	2014, Assiut.	40
2	Dominance and abundance degrees of the pests and the	
	associated predators inhabiting cantaloupe plants during	
	2015, Assiut.	42
3	Population (mean No. /leaf) of B. tabaci on cantaloupe	
	plants in relation to abiotic and biotic factors during 2	
	seasons, Assiut.	47
4	Population (mean No. /one leaf) of B. tabaci on	
	cantaloupe plants in relation to abiotic and biotic factors	
	during 2015 season, Assiut.	49
5	Mean No. of B.tabaci infesting cantaloupe as affected by	
	cantaloupe varieties during 2014 and 2015 growing	
	seasons, Assiut.	58
6	Mean No. of B.tabaci infesting cantaloupe as affected by	
	N- fertilization during 2014 and 2015 growing seasons,	
	Assiut.	62
7	Total protein in <i>B. tabaci</i> fed on different plant varieties.	70
8	Total carbohydrate in B. tabaci fed on different plant	
	varieties.	70
9	Total lipids in <i>B. tabaci</i> fed on different plant varieties .	71
10	lipase activity in <i>B. tabaci</i> fed on different plant varieties.	71
11	α -amylase activity in <i>B. tabaci</i> fed on different plant	72

	varieties.	
12	The whole length of male antenna (male An) and female	
	antenna (female An) of <i>Bemisia tabaci</i> fed on cantaloupe.	84
13	The length of the male and female scape (M scape), (F	
	scape) fed on cantaloupe.	84
14	The length of the male and the female pedicel (M ped), (F	
	ped) of <i>B. tabaci</i> fed on cantaloupe.	85
15	The length of the male and female first sub segment of	
	antenna (MS1), (FS1) fed on cantaloupe	85
16	The length of the male and female second sub segment of	
	antenna (MS2), (FS2) of <i>B. tabaci</i> fed on cantaloupe	86
17	The length of the male and female third sub segment of	
	antenna (MS3), (FS3) of <i>B. tabaci</i> fed on cantaloupe	86
18	The length of the male and female fourth sub segment of	
	antenna (MS4), (FS4) of <i>B. tabaci</i> fed on cantaloupe	87
19	The length of the male and female fifth sub segment of	
	antenna (MS5), (FS5) of <i>B. tabaci</i> fed on cantaloupe	87
20	The length of the male terminal hair (M TH) and female	
	terminal hair (F TH) of <i>B. tabaci</i> fed on cantaloupe	88
21	The length of the male and female trichoid sensilla (M	
	T _I), (F T _I) of antenna	91
22	The length of the male and female trichoid sensilla (M	
	T_{II}), (F T_{II}) of antenna	91
23	Length of the male and female trichoid sensilla (M T_{III}),	
	(F T _{III}) of antenna	92
24	The length of the male and female long trichoid sensilla	92

	$(M LT_{IV})$, $(F LT_{IV})$ of antenna	
25	The length of the male and female basiconic sensilla (M	
	B_{I}), (F B_{I}) of antenna	93
26	The length of the male and female basiconic sensilla (M	70
20		02
	B _{II}), (F B _{II}) of antenna	93
27	The length of the male and female basiconic sensilla (M	
	B _{III}), (F B _{III}) of antenna	94
28	The length of the male and female styloconic sensilla (M	
	ST), (F ST) of antenna	94
29	The diameter of the male and female compound eyes (M	
	Co), (F Co) of <i>B. tabaci</i> fed on cantaloupe plants.	101
30	The length of the male and female hind wing (M Hw),	
	(F Hw) of <i>B. tabaci</i> .	103
31	the length of the male and female tarsus (M Ta), (F Ta) of	
	B. tabaci.	103
32	The length of the male and female long trichoid sensilla	
	(M LT _{IV}), (F LT _{IV}) of tarsus	105
33	The length of the male and female trichoid sensilla (M	
	T_{II}), (F T_{II}) of tarsus	105
34	Length of the male and female trichoid sensilla (M T_{III}),	
	(F T _{III}) of tarsus.	106
35	The length of the male and female trichoid sensilla (M	
	T _I), (F T _I) of tarsus	106
36	The length of the male and female basiconic sensilla (M	
	B _{II}), (F B _{II}) of tarsus	107
37	The length of the male and female long trichoid sensilla	111

	$(M LT_{IV})$, $(F LT_{IV})$ of genitalia	
38	The length of the male and female trichoid sensilla (M	
	T _{II}), (F T _{II}) of genitalia	111
39	Length of the male and female trichoid sensilla (M T_{III}),	
	(F T _{III}) of genitalia	112
40	The length of the male and female trichoid sensilla (M	
	T _I), (F T _I) of genitalia.	112
41	The length of the male and female basiconic sensilla (M	
	B _{II}), (F B _{II}) of genitalia	113
42	The length of the male and female trichoid sensilla (M	
	T_{II}), (F T_{II}) of wings	119
43	Length of the male and female trichoid sensilla (M T_{III}),	
	(F T _{III}) of wings	119
44	The length of the male and female trichoid sensilla (M	
	T _I), (F T _I) of wings	120
45	The length of the male and female basiconic sensilla (M	
	B _I), (F B _I) of wings	120
46	The length of the male and female basiconic sensilla (M	
	B _{II}), (F B _{II}) of wings	121
47	The length of the male and female basiconic sensilla (M	
	B _{III}), (F B _{III}) of wings	121

No	Plate Pag	
1	Female and male antenna 89	
2	Female pedicel 9	
3	Male pedicel 9	
4	Female and male first sub segment of 9	
5	Female and male third sub segment of antenna. 98	
6	Female fifth sub segmentof antenna.	99
7	Male fifth sub segment of antenna	100
8	Female and male compound eyes	102
9	Female tarsus	108
10	Male tarsus	
11	Female genitallium	114
12	Female ovipositor	115
13	Male genitallium	116
14	Line drawings of greenhouse whitefly ovipositor	117
15	Female and male fore wings	122
16	Female and male hind wings	123
17	dorsal view of fourth instars of B. tabaci	124
18	Vasiform orifice of pupa.	125
19	ventral view of fourth instar (pupa)	126
20	Process of molting	127
21	Wax particles	128

No	micrograph	Page	
1	Micrograph (a, b) Female and male antennae		
2	Micrograph (a, b) female pedicel, (c, d) different		
	magnification micrographs of female pedicel	95	
3	Micrograph (a) male pedicel (b, c, d) different magnification		
	micrographs of male pedicel	96	
4	Micrograph (a) female first sub segment of antennae, (b)		
	high magnification micrograph of female first sub segment.		
	Micrograph (c) male first sub segment of antennae, (d) high		
	magnification micrograph of male first sub segment	97	
5	Micrograph (a) female third sub segment, (b) high		
	magnification micrograph of female third		
	subsegment. Micrograph (c) male third sub segment		
	of antenna, (d) high magnification micrograph of		
	male third sub segment	98	
6	Micrographs (a, b) female fifth sub segment of antenna, (c, d)		
	different magnification micrographs of female fifth		
	sub segment.	99	
7	Micrographs (a, b, c and d) different magnification		
	micrographs of male fifth sub segment of antenna.	100	
8	Micrograph (a) female compound eyes (b)high magnification		
	micrograph of female compound eyes. Micrograph (c) male		
	compound eyes (d) high magnification micrograph of male		
	compound eyes.	102	

9	Micrograph (a, b) female tarsus, (c)) high magnification		
	micrograph of female tarsus		
10	Micrograph (a, b) male tarsus, (c) high magnification		
	micrograph of male tarsus		
11	Micrographs (a, b, c) different magnification of female		
	genitallium (d) high magnification micrograph of female		
	genitallium		
12	Micrographs (a, b, d) Female ovipositor, (c) high		
	magnification micrograph of female genitallium		
13	Micrograph (a) dorsal view of male genitallium, micrographs		
	(b, c) lateral view of male genitallium, (d) high		
	magnification micrograph of male genitalium		
		116	
14	Micrograph (a) line drawings of greenhouse whitefly		
	ovipositor, micrograph (b) copulation in greenhouse whitefly	117	
15	Micrograph (a) female fore wing, (b) high magnification		
	micrograph of female fore wing. Micrograph (c) male fore		
	wing (d) high magnification micrograph of male fore wing	122	
16	Micrograph (a) female hind wing, (b) high magnification		
	micrograph of female hind wing. Micrograph (c) male hind		
	wing (d) high magnification micrograph of male hind wing	123	
17	Micrographs (a, b, c) different magnification of dorsal view		
	of fourth instars of B. tabaci, (d) high magnification		
	micrograph of pupal antenna	124	
18	Micrographs (a, b)Vasiform orifice of pupa, (c) hig		
	magnification micrograph of vasiform orifice.	125	
19	Micrographs (a, b, c) different magnification of ventral view	126	

	of fourth instar (pupa), (d) high magnification micrograph of ventral view of pupa.	
20	Micrographs (a, b, c) nymph in process of molting, (d) high magnification micrograph of head of new molted adult.	127
21	Micrograph (a) wax particles, (b) high magnification micrograph of wax particles.	128

List of Abbreviations (Morphology)

1	Μ	Male
2	F	Female
3	Со	Compound eyes
4	Om	Ommatidia
5	Та	Tarsus
6	Hw	Hind wing
6	An	Antenna
7	Ped	Pedicel
8	S1	First Subsegment of antenna
9	S2	Second Subsegment of antenna
10	S 3	Third Subsegment of antenna
11	S4	Fourth Subsegment of antenna
12	S 5	Fifth Subsegment of antenna
14	TH	Terminal hair
15	LT _{IV}	Long trichoid sensilla
16	T _{II}	Trichoid sensilla type II
17	T _{III}	Trichoid sensilla type III
18	TI	Trichoid sensilla type I
19	BI	Basiconic sensilla type I
20	B _{II}	Basiconic sensilla type II
21	B _{III}	Basiconic sensilla type III
22	ST	Styloconic sensilla
23	Cam	Campinoform sensilla
24	H.B	Humped base
25	T _b	Bulbous tipes

26	T _C	Cuticular process
27	Li	Lingula
28	Ov	Ovipositor
29	Go	gonapophysis
30	Cl	claspers
31	L.E.S	lateral ecdysial suture
32	W.p	wax particles

Summary

The present studies were carried out in the Experimental Farm of Faculty of Agriculture, Al-Azhar University during 2014-2015 seasons of cantaloupe. The main objectives of the present work were to study Ecological, Physiological and Ultra-Structure Studies on the Whitefly, *Bemisia tabaci* (Gen.) Infesting Cantaloupe and Their Natural Enemies at Assiut.

The obtained results could be summarized as follows:

1-Ecological studies

1.1-Survey of pests and their associated predators recorded on cantaloupe plants at Assiut

Results indicated that the presence of 22 species of arthropods belonged to 17 families and 11 orders. From the species collected, 4 species are considered main pest causing great damage, 6 slightly harmful, and 8 beneficial arthropods as well as unidentified species of true spiders.

1.1.1- Pests

The collected species inhabiting cantaloupe plants can be classified as sucking pests, leaf feeders, and leaf miners. In general of 8 orders (Orthoptera, Thysanoptera, Hemiptera-Heteroptera, Hemiptera- Homoptera, Coleoptera, Lepidoptera, Diptera and 11 families (Gryllotalpidae, Agromyzidae, Acarina) and Cocciniellidae, Cicadellidae, Noctuidae, Pentatomidae, Aleyrodidae, Aphididae, Acridiidae, Thripidae and Tetranychidae).

1. 1.2- Predators

Eight species were identified as entomophagous. They are belonging to 5 orders (Dermaptera, Hemiptera-Heteroptera, Neuroptera, Coleoptera, and Diptera as well as some of the unidentified species of true spiders) and 6 families (Labiduridae, Anthocoridae, Chrysopidae, Coccinellidae, Lygaeidae and Syrphidae). The green lacewing, *Chrysoperla carnea* (Steph.), *scymnus sp.* and the lady beetles, *Coccinella undecimpunctata* L., were the most abundant predators which recorded and identified.

1.2- Dominance and abundance degrees of sucking pests and the associated predators on cantaloupe plants

In general, from the above mentioned results it could be concluded that B. *tabaci* and T. *urticae* seem to be the most important economic pests infesting cantaloupe as indicated by the highest value of dominance and abundance degrees.

However, the high abundance degrees of *M. persicae* and *A. gossyypii* which had low dominance degrees indicate that these species could be of economic importance if the environmental conditions changed in their favour. Meanwhile, the species of *Empoascae* and *T. tabaci* which had low values of abundance and dominance are expected to be of little economic importance as they may cause a minor role as pests in cantaloupe plantations in Assiut.

Although the predators, *scymnus sp* and *C. undecimpuncta*ta seem to be the most numerous predators recovered inhabiting cantaloupe plants.

1.3- Seasonal abundance of the whitefly, *B. tabaci* in cantaloupe:

From the present results it could be observed that, the cantaloupe plants suffered from the attack with nymphs and adults of the *B. tabaci* in the period from vegetative stage to the ripening stages. The population densities of the pest increased progressively from end of May to the third week of June) when the plants were in the end of flowering stage to mid-July when the plants were in the fruit set stage.

1.4- Effect of cantaloupe varieties

The results revealed that varieties of Ideal and Primo of cantaloupe was more susceptible to the whitefly infestation harbouring the highest population of the pest followed by Sundown during the two seasons.

1.5- Effect of Nitrogen fertilization rate

Generally, during, the highest numbers of *B. tabaci* was recorded on the plants received double of the recommended dose of Nitrogen fertilizer. Whereas, the lowest infestation were recorded on the plants in the check plots or received the half and recommended dose of Nitrogen fertilizer, respectively.

2- Physiological studies

The physiological results showed a variation in (total carbohydrate, total protein and total lipids) and digestive enzymes during study period within the fourth instars of *B. tabaci* according to different cantaloupe cultivars (Ideal, Sundown and Primo). Total carbohydrate levels in immature stages of *B.tabaci* collected from cantaloupe cultivars primo was higher than those in Ideal and sundown. In contrast, total carbohydrate levels in immature stages of *B.tabaci* collected from cantaloupe cultivars Ideal was lower than both.Total protein levels in immature stages collected from cultivar Ideal was significantly lower than Sundown and primo. Although, there were no significant difference between Sundown and Primo cultivars. otherwise, the content of total lipids showed a significant difference between the two cultivars Ideal and Sun down and between Ideal and Primo but no significant difference between Sundown and Primo. Demonstration of α - amylase activity and lipase in *B. tabaci* nymphal stages showed a significant different in α - amylase and lipase activity, the activity of α - amylase and lipase were highest in immature stages of *B.tabaci* collected from cantaloupe Primo and slightly declined in Sundown, Ideal cultivar was the lowest in two enzymes.

3- Morphological studies

This morphological study showed that there are differences in types, numbers and lengthes of sensilla which scattered over the body of whitefly male and female. Morphometric differences were found all over the body.

The antennae of adult of *B.tabaci* are 7-segments on both sexes. Antenna of *B. tabaci* composed of, scape was the first basal segment and above this segment directly the bulbous pedicel, then long flagellum which composed of 5 sub segments. These antennal segments finished by long hair which defined as terminal hair. This hair has looked with long curved trichoid on the tip of the female, while has been a long annular styloconic sensilla on the tip of the male. Antenna of *B. tabaci* possessed several different kinds of sensillae; they were trichoid sensilla (T₁), trichoid sensilla type II, III (T_{II}, T_{III}), long trichoid sensilla (LT_{IV}) which on the females 5 long trichoid sensilla were presented and 7 on the males, Basiconic sensilla type I, II, III (B₁, B_{II}, B_{III}), Styloconic sensilla (ST) that was mentioned firstly in this study in *B.tabaci*, and campainoform sensilla (Cam). There were large differences between lengths of these sensilla on male and female and sometimes differences in lengthes and shapes. The diameter of the ommatidia of compound eye on female of *B.tabaci* was greater than the male. In this study, there were no sensilla observed on male and female eyes.

Legs of adult *B. tabaci* consisted of: coxae, trochanters, femora, tibiae, short tarsi and pretarsi. The pretarsus bears a pair of claws. The tarsus of female of *B. tabaci* was longer than the tarsus of male. *B.tabaci* tarsus had different types of sensilla, basiconic sensilla (B_{II}), very long trichoid sensillae (LT_{IV}), trichoid sensilla (T_{I} , T_{II} , T_{III}). Also, there were large morphometreic differences in these sensilla between two sexes.

The ovipositor of female was composed of two pairs of gonapophyses and the male genitalia consisted of a pair of parameres (claspers), form the tip of the male abdomen. Both male and female genitalia were covered with different sensilla as tricodea sensilla (T_{II} , T_{III}), long trichoid sensilla (LT_{IV}) and basiconic sensilla (B_{II}). Moreover, The female genitalia had basiconic sensilla (B_{II}) which not observed on male genitalia. In contrast, the male genitalia had trichoid sensilla (T_{I}) but this type of sensilla not observed on the female.

Wings were usually white, the front wings were larger than the hind wings on male and female. Fore and hind wings on both sexes had a different type of sensilla; trichodea sensilla (T_I, T_{II}, T_{III}) and basiconic sensilla (B_I, B_{II}, B_{III})

The final whitefly larval stage was usually termed a puparium, Fourth instars were oval in shape and flattened dorso-ventrally with one segmented antennae and had few sensory organs. In the fourth instar of *B. tabaci*, the ecdysal suture was appeared dorsal and laterally