FLUORESCENT PSEUDOMONADS AS PLANT GROWTH PROMOTERS AND BIOCONTROL OF ROOT-INFECTING PATHOGENS ON MAIZE PLANT

By

OSAMA ELSAYED MOHAMED

B.Sc.Agric.Sc. (Biotechnology), Ain-Shams University, 2012

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Degree of

MASTER OF SCIENCE in Agricultural Sciences (Agricultural Microbiology)

Department of Agricultural Microbiology Faculty of Agriculture Ain-Shams University

ABSTRACT

Osama Elsayed Mohamed:Fluorescent Pseudomonads as Plant Growth Promoters and Biocontrol of Root-Infecting Pathogens on Maize Plant. Unpublished M. Sc. Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, 2019.

Possibility of manipulating some of the efficient strains of rhizospheric fluorescent pseudomonads to manage the root-infecting pathogens of maize was studied throughout this study. Out of 110 isolates, 24 of *Pseudomonas* species, recovered from the rhizosphere of maize and sugar beetshowed high antagonistic effect against two major root-infecting pathogens of maize, namely Cephalosporium maydis and Fusarium verticillioides in vitro. Pot experiment revealed that just 4 isolates could reduce infection with both pathogens and enhance the plant growth as well. Based on the genotypic identifications, they could be identified as: Pseudomonas putida Pau9, P.putidaPau11, P.putida Psf3 enzymes revealed *P.aeruginosa*Psf9.Assay of extracellular and that cellulase was actively produced, only by P. aeruginosa Psf9. Chitinase, however was detected in growing media of three strains, but not by P. putida Paul1. Assay of antibiotics produced by the bacterial strains showed that phenazine could, only be produced by P. aeruginosa Psf9. HCN was found to be excreted by *P. putida* Psf3 and *P. aeruginosa* Psf9. Except P. putida Pau9, the IAA could be produced by the other three strains. All strains were able to produce siderophores, and caused availability of P and K. GC-MS analyses revealed that different compounds were detected within the metabolites produced by each of Pseudomonas strains under study. Coating maize seed with the mixture of the four strains and seeding in potted-soil infested singly with one of the two target pathogens, or in combination revealed that fresh and dry weights of resulting plants were significantly increased compared with the control. Treatment caused significant increase in root lengths, but insignificant increase in shoot lengths. This is correct in soil infested with C. maydis. Whereas, in soil infested with F. verticillioides, treatment caused significant results in all of the growth parameters of plants. Combining the two pathogens in soil showed that insignificant effect of coating seed with the mix of bacteria on any of shoot or root lengths. Whereas, significant results were found in shoot and root weights compared to the non-treated control.

Keywords: Fluorescent Pseudomonads, *Cephalosporiummaydis*. *Fusarium verticillioides*, Maize plant, GC-MS analyses bioagent.

CONTENTS

LIST OF FIGURES. INTRODUCTION REVIEW OF LITERATURE. 1. Maize plant as an economical crop. 2. Pathogens infected maize plant 3. Fluorescent pseudomonads involved in suppression of plant root pathogens and improving plant growth A. Antagonism by production of lytic enzymes. B. Phytohormones production C. Production of siderophores D. Antibiotic production E. Production of Hydrogen cyanide (HCN) F. Phenolic compound G. Phosphate solubilization H. Potassium solubilization 4. Performance of plant affected by microbial inoculants MATERIAL AND METHODS 1. Isolation and identification of maize infected pathogens A. Cephalosporium maydis (Harpophora maydis) B. Fusarium verticillioides (F.moniliforme) 2. Isolation of rhizospheric fluorescent pseudomonads 3. Assessment the antagonistic activity of fluorescent pseudomonads 4. In vitro antagonistic activity. B. In vivo evaluation of antagonist bacterial isolates 4. Identification of the most efficient Pseudomonas isolate 4. Identification of the most efficient Pseudomonas spp.	LIST OF TABLE
INTRODUCTION REVIEW OF LITERATURE. 1. Maize plant as an economical crop 2. Pathogens infected maize plant 3. Fluorescent pseudomonads involved in suppression of plant root pathogens and improving plant growth A. Antagonism by production of lytic enzymes. B. Phytohormones production C. Production of siderophores D. Antibiotic production E. Production of Hydrogen cyanide (HCN) F. Phenolic compound G. Phosphate solubilization H. Potassium solubilization H. Potassium solubilization A. Cephalosporium maydis (Harpophora maydis) I. Isolation of rhizospheric fluorescent pseudomonads B. Fusarium verticillioides (F.moniliforme) 2. Isolation of rhizospheric fluorescent pseudomonads 3. Assessment the antagonistic activity of fluorescent pseudomonads A. In vitro antagonistic activity. B. In vivo evaluation of antagonist bacterial isolates 4. Identification of the most efficient Pseudomonas isolate. 4. Identification of the most efficient Pseudomonas isolate.	
 REVIEW OF LITERATURE. I. Maize plant as an economical crop. 2. Pathogens infected maize plant 3. Fluorescent pseudomonads involved in suppression of plant root pathogens and improving plant growth A. Antagonism by production of lytic enzymes. B. Phytohormones production C. Production of siderophores D. Antibiotic production E. Production of Hydrogen cyanide (HCN) F. Phenolic compound G. Phosphate solubilization H. Potassium solubilization H. Potassium solubilization I. Isolation and identification of maize infected pathogens. A. <i>Cephalosporium maydis (Harpophora maydis)</i>. B. <i>Fusarium verticillioides (F.moniliforme</i>). I. Isolation of rhizospheric fluorescent pseudomonads	
 Maize plant as an economical crop. Pathogens infected maize plant Fluorescent pseudomonads involved in suppression of plant root pathogens and improving plant growth Antagonism by production of lytic enzymes. Phytohormones production Production of siderophores Production of Hydrogen cyanide (HCN) Production of Hydrogen cyanide (HCN) Production of Hydrogen cyanide (HCN) Phenolic compound Phosphate solubilization Potassium solubilization Performance of plant affected by microbial inoculants MATERIAL AND METHODS Isolation and identification of maize infected pathogens. Fusarium verticillioides (F.moniliforme). Isolation of rhizospheric fluorescent pseudomonads	
 Pathogens infected maize plant	
 3. Fluorescent pseudomonads involved in suppression of plant root pathogens and improving plant growth A. Antagonism by production of lytic enzymes. B. Phytohormones production C. Production of siderophores D. Antibiotic production E. Production of Hydrogen cyanide (HCN) F. Phenolic compound G. Phosphate solubilization H. Potassium solubilization 4. Performance of plant affected by microbial inoculants MATERIAL AND METHODS 1. Isolation and identification of maize infected pathogens B. <i>Fusarium verticillioides (F.moniliforme)</i> 2. Isolation of rhizospheric fluorescent pseudomonads A. Assessment the antagonistic activity of fluorescent pseudomonads A. <i>In vitro</i> antagonistic activity. B. <i>In vivo</i> evaluation of antagonist bacterial isolates 4. Identification of the most efficient <i>Pseudomonas</i> isolate. 	
root pathogens and improving plant growth A. Antagonism by production of lytic enzymes. B. Phytohormones production C. Production of siderophores D. Antibiotic production E. Production of Hydrogen cyanide (HCN) F. Phenolic compound G. Phosphate solubilization H. Potassium solubilization H. Potassium solubilization A. Cephalosporium maydis (Harpophora maydis). B. Fusarium verticillioides (F.moniliforme). 2. Isolation of rhizospheric fluorescent pseudomonads 3. Assessment the antagonistic activity of fluorescent pseudomonads. A. In vitro antagonistic activity. B. In vivo evaluation of antagonist bacterial isolates 4. Identification of the most efficient Pseudomonas isolate. 4. Identification of the most efficient Pseudomonas spp.	
 A. Antagonism by production of lytic enzymes	
 B. Phytohormones production C. Production of siderophores D. Antibiotic production E. Production of Hydrogen cyanide (HCN) F. Phenolic compound G. Phosphate solubilization H. Potassium solubilization 4. Performance of plant affected by microbial inoculants MATERIAL AND METHODS I. Isolation and identification of maize infected pathogens A. <i>Cephalosporium maydis (Harpophora maydis)</i> B. <i>Fusarium verticillioides (F.moniliforme)</i> Isolation of rhizospheric fluorescent pseudomonads A. <i>In vitro</i> antagonistic activity B. <i>In vivo</i> evaluation of antagonist bacterial isolates I. Isoichemical characterization of <i>Pseudomonas</i> spp. 	
 C. Production of siderophores	
 D. Antibiotic production	
 E. Production of Hydrogen cyanide (HCN) F. Phenolic compound	-
 F. Phenolic compound	-
 G. Phosphate solubilization	F. Phenolic compound
 4. Performance of plant affected by microbial inoculants MATERIAL AND METHODS	G. Phosphate solubilization
 MATERIAL AND METHODS. 1. Isolation and identification of maize infected pathogens A. <i>Cephalosporium maydis (Harpophora maydis)</i> B. <i>Fusarium verticillioides (F.moniliforme)</i> 2. Isolation of rhizospheric fluorescent pseudomonads 3. Assessment the antagonistic activity of fluorescent pseudomonads A. <i>In vitro</i> antagonistic activity B. <i>In vivo</i> evaluation of antagonist bacterial isolates 4. Identification of the most efficient <i>Pseudomonas</i> isolate 4.1. Biochemical characterization of <i>Pseudomonas</i> spp 	H. Potassium solubilization
 I.Isolation and identification of maize infected pathogens A. Cephalosporium maydis (Harpophora maydis) B. Fusarium verticillioides (F.moniliforme) Isolation of rhizospheric fluorescent pseudomonads Assessment the antagonistic activity of fluorescent pseudomonads A. In vitro antagonistic activity B. In vivo evaluation of antagonist bacterial isolates Identification of the most efficient Pseudomonas isolate Biochemical characterization of Pseudomonas spp 	4. Performance of plant affected by microbial inoculants
 A. Cephalosporium maydis (Harpophora maydis)	MATERIAL AND METHODS
 B. Fusarium verticillioides (F.moniliforme) 2. Isolation of rhizospheric fluorescent pseudomonads 3. Assessment the antagonistic activity of fluorescent pseudomonads A. In vitro antagonistic activity B. In vivo evaluation of antagonist bacterial isolates 4. Identification of the most efficient Pseudomonas isolate 4.1. Biochemical characterization of Pseudomonas spp 	1. Isolation and identification of maize infected pathogens
 Isolation of rhizospheric fluorescent pseudomonads Assessment the antagonistic activity of fluorescent pseudomonads In vitro antagonistic activity In vivo evaluation of antagonist bacterial isolates Identification of the most efficient <i>Pseudomonas</i> isolate Biochemical characterization of <i>Pseudomonas</i> spp 	A. Cephalosporium maydis (Harpophora maydis)
 3. Assessment the antagonistic activity of fluorescent pseudomonads	B. Fusarium verticillioides (F.moniliforme)
pseudomonads A. <i>In vitro</i> antagonistic activity B. <i>In vivo</i> evaluation of antagonist bacterial isolates 4. Identification of the most efficient <i>Pseudomonas</i> isolate 4.1. Biochemical characterization of <i>Pseudomonas</i> spp	2. Isolation of rhizospheric fluorescent pseudomonads
 A. <i>In vitro</i> antagonistic activity B. <i>In vivo</i> evaluation of antagonist bacterial isolates 4. Identification of the most efficient <i>Pseudomonas</i> isolate 4.1. Biochemical characterization of <i>Pseudomonas</i> spp 	3. Assessment the antagonistic activity of fluorescent
 B. <i>In vivo</i> evaluation of antagonist bacterial isolates 4. Identification of the most efficient <i>Pseudomonas</i> isolate 4.1. Biochemical characterization of <i>Pseudomonas</i> spp 	pseudomonads
4. Identification of the most efficient <i>Pseudomonas</i> isolate4.1. Biochemical characterization of <i>Pseudomonas</i> spp	A. In vitro antagonistic activity
4.1. Biochemical characterization of <i>Pseudomonas</i> spp	B. In vivo evaluation of antagonist bacterial isolates
	4. Identification of the most efficient <i>Pseudomonas</i> isolate
4.2. Molecular identification of <i>Pseudomonas</i> spp	4.1. Biochemical characterization of <i>Pseudomonas</i> spp
	4.2. Molecular identification of <i>Pseudomonas</i> spp

Page

5. 1	Molecular identification of Fusarium	16
5.1. I	DNA extraction	16
5.2.1	PCR amplification	17
6. I	Molecular identification of Cephalosporium	17
6.1. l	DNA extraction	17
6.2. I	DNA extraction	17
7.	Phylogenetic analysis	18
8.	Characterization of antagonistic bacteria	18
8.1.	Production of bacterial lytic enzymes	18
A.	Production of cellulase	18
B.	Pectinase activity	19
C.	Chitinase activity	19
8.2.	Detection of antibiotic production genetically	19
8.3.	Phosphate solubilization	21
8.3.1	. Qualitative assay	21
8.3.2	. Quantitative assay	21
8.4.	Potassium solubilization	21
8.5.	Production of indole 3- acetic acid (IAA)	22
8.6.	Production of HCN	22
8.7.	Quantitative assessment of siderophore production	22
1-	Preparation of standard curve of deferoxamine mesylate	22
2-	Preparation of culture for examination	23
3-	Quantitative siderophores	23
9.	Characterization of antifungal metabolites by Gas	
	Chromatography Mass Spectrometry (GC-MS)	24
10.	Effect of bioagent on fungal pathogen infected maize plant,	25
	under pot experiment	25
10.1.	Parameters measured	25
A.	Vegetative parameters	25
B.	Chemical analysis	25
1-	Nitrogen, phosphorus and potassium content	25
2-	Chlorophyll and beta carotenoid contents	26

a. Enzyme activity assay	26
11. Statistical analysis	26
RESULTS	27
1. Identification of pathogenic fungus of maize plant	27
1.1. Phenotypic identification of Cephalosporium maydis	27
1.2. Genotypic identification of Cephalosporim maydis	27
1.3. Phenotypic identification of Fusaruim	27
1.4. Phylogenatic analysis of Fusarium	27
2. Isolation of the fluorescent pseudomonads	30
3. Antifungal activity	30
4. Evaluation of selected cultures as biocontrol agent in vivo	31
5. Biochemical characterization of fluorescent pseudomonads	33
6. Genotypic identification for the most potent antagonist	
bacterial isolates	34
7. Biologcal activities of the efficient bacterial strains	37
7.1. Production of extracellular enzymes	37
7.2. Antibiosis of <i>Pseudomonas</i> strains	38
7.3. Production of hydrogen cyanide (HCN)	38
7.4. Production of siderophores	38
7.5. Production of phytohormones by <i>Pseudomonas</i> strains	39
7.6. Phosphate solubilization	40
7.7. Potassium availability	40
8. Analyses of secondary metabolites produced by the four	
efficient Pseudomonas strains	41
9. Performance of maize plant in soil infested with root-infecting	
pathogen and biocontrol agent	46
9.1. Vegetative parameters	46
9.2. Accumulation of pigment and enzyme activity of mize plant	51
DISCUSSION	54
SUMMARY	60
REFERENCES	63
ARABIC SUMMARY	

LIST OF TABLES

No.		Page
1	Sequence of specific primer used for Pseudomonas spp	
	identification	16
2	Primers for PCR analysis of tested antibiotics	20
3	Number of fluorescent pseudomonads isolates recovered	
	from different sources	30
4	Efficiency of coating maize seed with fluorescent	
	pseudomonad isolates in managing root-infecting	
	pathogens of maize under greenhouse conditions	32
5	Biochemical characterization for identification of the	
	most potent Pseudomonas isolates	33
6	Assessment of enzymatic activity of selected	
	Pseudomonas strains	37
7	Potency of <i>Pseudomonas</i> strains for producing	
	antimicrobial compounds	39
8	Production of IAA and gibberellins by tested strains	39
9	GC-MS analyses for the metabolites produced by	
	Pseudomonas putida psf 3 in liqid culture	42
10	GC-MS analyses for the metabolites produced by	
	Pseudomonas aeruginosa psf 9 in liqid culture	43
11	GC-MS analyses for the metabolites produced by	
	Pseudomonas putida Pau 9 in liquid culture	44
12	GC-MS analyses for the metabolites produced by	
	Pseudomonas putida Paul1 in liquid culture	45
13	Effect of the combination of the four bacterial mixture	
	and C.maydis on parameters of maize plant growth under	
	greenhouse conditions	47
14	Effect of the combination of the four bacterial mixture	
-	and <i>F. verticillioides</i> on growth parameters of maize	
	plants under greenhouse conditions	48
	r Breenhouse conductor	••

No.		Page
15	Effect of the combination of the four bacterial mixture	
	and C.maydis + F. verticillioides on growth parameters	
	of maize plants under greenhouse conditions	48
16	Effect of the combination of four bacterial mix and	
	fungal pathogens on chlorophyll and carotenoides	
	contents of mize plant under greenhouse condition	51
17	Effect of combination of bacterial mixture and fungal	
	pathogens on peroxidase activity of maize plant under	
	greenhouse conditions	52

LIST OF FIGURES

No.	
1	Phenotypic identification of Cephalosporium maydis
2	Agarose gel electrophoresis of the PCR-product of 18S
	rRNA gene sequences from C.maydis Lane1: M1500bp
	DNA ladder, Lane2: C.maydis
3	Phenotypic identification of Fusaruim
4	Phylogenetic tree, based on 1α (TEF1 α) gene
	seqences, showing the relationships between isolated strain
	1OSA(show in box) and taxa. Bootstrap percentages (based
	on 1000 replicates)
5	Agarose gel electrophoresis of the PCR-product of
	16SrDNA sequences from the most potent Pseudomonas
	strains along with the target primer. Lane1: M1500bp DNA
	ladder, Lane2:Psf3,Lane3: Psf9, Lane4: Pau9, Lane5:
	Paul 1
6	Phylogenetic tree, based on 16S rRNA gene sequences,
	showing the relationships between Pseudomonas isolates Psf
	3, Psf 9, Pau 9 and Pau 11[show in boxes] and relaed taxa.
	Bootstrap precentages (based on 1000 replicates)
7	Activity of Pseudomonas strains for producing some
	extracellular enzymes
8	Potency of Psudomonas strains for solubilizing phoshate and
	potassium in specific liquid media
9	Effect of the combination of the four bacterial mixture and
	C.maydis, F. verticillioides and C.maydis + F. verticillioides
	on growth parameters of maize plants under greenhouse
	condition
10	Peroxidase activity of maize plant afficted by fungal
	pathogen and antagonistic bacterial strains mixture under
	greenhouse conditions