LIST OF NOTATIONS

FFA	free fatty acids
SE	standard error
R2	coefficient of determination
RBO	rice bran oil
OBs	oil bodies
RB	refined-bleached
BHA	Butylated hydroxyl anisole
BHT	Butylated hydroxyl toluene
ТВА	Thiobarbituric acid
CD	conjugated diene
PV	peroxide value
TBARS	Thiobarbituric acid reactive substances
TPC	total phenolic contents
PP	Pomegranate peels
MBE	mean bias error
x ²	chi –square
RMSE	root mean square error
r	correlation coefficient

CONTENTS

Title	р.
List of tables	
List of figures	
1. Introduction	2
2. Review of literature	3-25
2.1. Importance of canola	3
2.2. Medical Importance of canola seeds and oil	6
2.3. Factors affecting harvesting and storability of canola	7
2.3.2. Storability of canola seeds	7
2.3.1. Harvesting of canola	8
2.4. Drying of Agricultural Crops	10
2.4.1. Methods of Drying Agricultural Crops	11
2.4.1.1 Advanced and new drying techniques	11
2.4.1.2. Natural Drying (sun drying)	13
2.4.1.3 Solar Drying	14
2.4.1.4. Mechanical Drying	19
2.5. accelerated drying of agricultural products	20
2.6. Effect of accelerated drying process on stabilization of canola seeds oil	22
2.7. Stabilization of canola seed	23
3. Materials and methods	26-36

3.1. The accelerated rotary dryer (conduction heating)	26
3.2. Test Crop	29
3.3. Experimental Treatments	30
3.4. Test procedure and Measurements	31
3.4.1. Test procedure	31
3.4.2. Experimental Measurements and Instrumentation	31
3.4.2.1. Surface temperature of the rotary cylinder	31
3.4.2.2.Moisture content of canola seeds	32
3.4.2.3.Bulk temperature of the heat-treated canola seeds	33
3.4.2.4.Free fatty acids (FFA%)in the extracted canola oil	34
3.5. Theoretical mathematical applied the drying process	35
4. Results and discussion	37-59
4.1. Accelerated Drying of canola seeds	37
4.1.1. Seeds Bulk Temperature	37
4.1.2. seeds moisture content	41
4.1.3. Analysis of drying curves	43
4.1.3.1. Analysis of Canola seed drying using Lewis model	44
4.1.3.2. Analysis of Canola seed drying using Henderson and Pabis's model	49
4.1.4. Calculation of the drying constants (Kh) and(A) for Henderson and pabis's model	50

4.1.5. Free Fatty Acids (FFA%) in the extracted oil	56
5. Summary, conclusion.	60-61
6. References	62-72
7. Appendix	
الملخص العربي .8	

LIST OF TABLES

Table No.	Item	Page
Table (4-1)	Values of drying constant (k_L) for Lewis model at different level of drying temperature and moisture content.	46
Table(4-2)	Constants of equation(4-1) relating the change in moisture content and (K_L) .	46
Table(4-3)	Constants of equation(4-3) relating the change in drying temperature and (K_L)	48
Table (4-4)	Drying constant (k_H) of Lewis model at different level of drying temperature and moisture content.	50
Table (4-5)	The calculated drying constant (A) of Henderson and Pubis's model.	51
Table(4-6)	Constants of equation(4-4) relating the change in moisture content and $(K_{\rm H})$	53
Table(4-7)	Constants of equation(4-5) relating the change in drying temperature and $(K_{\rm H})$.	55
Table (4-8)	Free Fatty Acids (FFA%), Percentage of oil and other related parameters in the extracted oil.	57
Table(4-9)	The over average of coefficient of determination (R^2) and standard error (SE) for lewis and Henderson models	58
Table(4-10)	The over average of coefficient of determination (r) ,chi – square(x^2), mean bias error (MBE) and root mean square error (RMSE) to Lewis and Henderson pubis's model.	58

LIST OF APPENDIX TABLES

(A-1)	Observed and calculated moisture content and moisture ratio by Lewis and Henderson model at drying temperature 85° C and MC= 21%.
(A-2)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 95° C and MC= 21.
(A-3)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 105° C and MC= 21%.
(A-4)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 115° C and MC= 21.
(A-5)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 125° C and MC= 21%.
(A-6)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 135° C and MC= 21%.
(A-7)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 145° C and MC= 21%.
(A-8)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 85° C and MC= 27%.
(A-9)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 95° C and MC= 27.
(A-10)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 105° C and MC= 27%.
(A-11)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 115° C and MC= 27%.
(A-12)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 125° C and MC= 27%.
(A-13)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 135° C and MC= 27%.
(A-14)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 145° C and MC= 27%.
(A-15)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 85° C and MC= 31%.

(A-16)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 95° C and MC= 31%.
(A-17)	Observed and calculated moisture content by Lewis and Henderson exponential equation at drying temperature 105° C and MC= 31%.
(A-18)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 115° C and MC= 31%.
(A-19)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 125° c the MC= 31%.
(A-20)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 135° C and MC= 31%.
(A-21)	Observed and calculated moisture content by Lewis and Henderson model at drying temperature 145° C and MC= 31%.

Figure (4-1)	changes in canola seeds bulk temperature as related to exposure time at different cylinder surface temperature at MC=21%	38
Figure (4-2)	changes in canola seeds bulk temperature as related to exposure time at different cylinder surface temperature at MC=27%	39
Figure (4-3)	changes in canola seeds bulk temperature as related to exposure time at different cylinder surface temperature at MC=31%	40
Figure (4-4)	Seeds moisture content against the drying time at different cylinder surface temperature at 21 % ,27% ,31%MC.	42
Figure (4-7)	Relationship between the drying constant (KL) and temperature (T) at different levels of moisture content	
Figure (4-8)	Relationship between the drying constant (KL) and temperature (T) at different levels of moisture content.	
Figure (4-9)	Relationship between the drying constant (KL) and moisture content (MC) at different levels of drying temperature.	
Figure (4-10)	Relationship between the drying constant (KH) and temperature (T) at different levels of moisture content.	
Figure (4-11)	Relationship between the drying constant (KH) and moisture content (MC) at different levels of drying temperature.	
Figure(4-12)	A typical 45degree plot of the observed and the calculated moisture content Mc 31% using Lewis	

	model.	
Figure(4-13)	A typical 45degree plot of the observed and the calculated moisture content Mc27% using Lewismodel.	
Figure(4-14)	A typical 45degree plot of the observed and the calculated moisture content Mc31% using Lewis model.	
Figure(4-15)	A typical(45)degree plot of the observed and the calculated moisture content Mc 21% using Henderson model.	
Figure(4-16)	A typical (45) degree plot of the observed and the calculated moisture content Mc 27% using Henderson model.	
Figure(4-17)	A typical(45)degree plot of the observed and the calculated moisture content Mc31% using Henderson model.	

5-SUMMARY AND CONCLUSION

Α study was conducted at the Rice Mechanization Center, Agric. Eng. Institute, Kefir EL-Sheikh Governorate. carried out to test and evaluate the effect of accelerated drying of canola on seeds moisture content, and stabilization of the extracted oil using a conduction heating rotary dryer. the drying temperature was set at approximately $(85,95,105,115,125,135, \text{ and } 145^{\circ}\text{c})$ and the drying time was set at (3,6,9,12,15, and18 min) and the moisture content of canola seeds was (21%-27%-31%)

The Measurements:

bulk temperature of the heat-treated canola seeds.

- 1. Moisture content of canola seeds.
- 2. Free fatty acids (FFA%) in the extracted canola oil.
- 3. percntage of oil content(hexane extract).

Accelerated Drying of canola seeds:

- seeds bulk temperature increase of exposure time ,longer exposure time gave a chance for canola seeds to gain heat until approaching a level close to that of heating surface temperature.
- 2. Rapid moisture removal from seeds obvious in all experiments particularly at higher heating surface temperature and longer exposure duration .Meanwhile, all the drying process occurred at the falling rate period.
- 3. The values of the drying constant (k_s)were varied with the drying temperature in which it was increased with the increase of drying temperature .
- 4. the reduction rate of seeds moisture content was dependent on drying temperature and decayed exponentially with the increase of the drying time .Also ,the simple drying equation could

satisfactorily describe drying behavior of canola seeds during the accelerated drying process.

5. The free fatty acids of the control sample (sun dried seeds to a moisture content of about 6.85 (w.b) approached a level of 17.76% while it was ranged from1.75% to3.61% for the heat treated samples.

THE CONCLUSION:

From the obtauied data ,it can be concuded that the accelerated drying and heat stabilization of canola seeds using the conduction heating rotary dryer may be considered as an effective procedure for moisture reduction ,and oil stabilization.

The heating surface temperature of 115° C and the exposure time of 18 minute decreased the moisture content of canola seeds to the safe level of 5.9% w.b., and percentage of free fatty acid 1.75.